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Abstract
This paper presents an innovative exploration of biofeedback photobioreactors, which utilise the 
“language of light” decoded from photosynthetic organisms themselves. Addressing the inherent inef-
ficiencies in photosynthetic conversion under various environmental conditions, the study delves into 
the potential of optimising abiotic factors in such systems. The core principle involves chlorophyll a 
fluorescence as a real-time indicator of photosynthetic activity, offering a non-invasive, comprehensive 
communication method between the researcher and the microorganism. By integrating this approach 
with advanced machine learning techniques, the paper proposes a method for deconvoluting complex 
fluorescence signals unique to each species. This approach not only holds the promise of enhancing the 
efficiency of photosynthetic microorganisms in controlled environments like bioreactors but also paves 
the way for significant advancements in sustainable biofuel production and other biotechnological 
applications. The paper underscores the importance of interdisciplinary research in overcoming the 
challenges of photosynthetic efficiency and highlights the potential of biofeedback photobioreactors 
to revolutionise the field of algal biotechnology.

Introduction

Photosynthesis, the fundamental pro-
cess by which plants, algae, and some 

bacteria convert light energy into chemical 
energy, has immense implications for both 
natural ecosystems and human industries. 
Despite its critical role, the efficiency of 
photosynthetic conversion, particularly 
under varying environmental conditions, 
remains suboptimal (Falkowski et al., 2017; 
Lin et al., 2016; Melis, 2009). On a global 
scale, phytoplankton convert approximately 
35% of absorbed photons to chemical energy 
through photosynthesis, while the majority, 
about 60%, are dissipated as heat, indicating 
a relatively low efficiency of photosynthetic 
conversion (Lin et al., 2016). Furthermore, 
under ideal conditions, the maximum 
efficiency of plant photosynthesis in sun-
light is 13%, however, when accounting 

for real-world factors such as measured 
quantum yields and absorption factors, the 
efficiency estimate drops to 9.3%, highlight-
ing the intrinsic limitations and suboptimal 
efficiency of photosynthesis in natural 
conditions (Bolton and Hall, 1991). This 
inefficiency works well in natural environ-
ments but poses a significant challenge in 
controlled environments, such as bioreac-
tors used in biotechnological applications.

The advent of biofeedback photobio-
reactors presents a promising solution to 
optimise biotic and abiotic factors that 
impact photosynthetic microorganisms. 
Optimisation of light utilisation via bio-
feedback has been demonstrated in higher 
plants (Ahlman et al., 2017; Van Iersel et 
al., 2016) but to date this research has not 
been translated in the microalgal research 
community. By integrating a feedback loop 
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between the photosynthetic organism and 
the light source, these systems promise a 
more efficient energy conversion process. 
The adoption of such technology could 
herald a significant leap forward in enhanc-
ing energy use efficiency and yield, with 
broad implications for sustainable produc-
tion of biofuel (Brennan and Owende, 2010; 
Hoang et al., 2023; Peng et al., 2020; Rafa et 
al., 2021), pharmaceuticals (Lu et al., 2024), 
human consumption (Yang et al., 2024), 
nutraceuticals (Nicoletti, 2016), aquaculture 
feed (Han et al., 2019) and wastewater treat-
ment (Srimongkol et al., 2022). This paper 
presents an exploration of the biofeedback 
photobioreactor concept, delving into the 
technological paths that might lead to such 
a breakthrough in the study of and applica-
tions with photosynthetic microorganisms.

Biofeedback: a two-way conversation
Simply put, the concept of biofeedback 
is a two-way communication between a 
microorganism and the researcher. For such 
a system to work we need to have an effec-
tive communication system that allows us to 
get information from the microorganism (1) 
in real-time, (2) non-invasively, and (3) the 
information needs to be complex enough 
to describe as many internal biological 
processes as possible.

At the core of this innovative approach is 
the utilisation of chlorophyll a fluorescence 
as a real-time indicator of the photosyn-
thetic and by extension biological status of 
the cell. Chlorophyll a fluorescence is a key 
non-invasive indicator of photosynthetic 
activity, specifically of photosystem II 
(PSII), and is extensively used in algal and 
plant research (Papageorgiou and Govin-
djee, 2004). The principle of chlorophyll a 
fluorescence analysis is based on the fact 

that light energy absorbed by chlorophyll 
molecules can have three fates: it can drive 
photosynthesis (photochemistry), be dissi-
pated as heat, or be re-emitted as light — the 
latter is chlorophyll a fluorescence. These 
processes are interdependent, meaning an 
increase in the efficiency of one leads to a 
decrease in the others. Therefore, by measur-
ing the yield of chlorophyll a fluorescence, 
insights can be gained into changes in the 
efficiency of photochemistry. The method 
is responsive enough to provide insight on 
the impact of environmental variables on 
the cell, which most commonly include, but 
are not limited to, light intensity (Herdean 
et al., 2022), light spectra (Bernát et al., 2021; 
Herdean et al., 2021), temperature (Herdean 
et al., 2023; Salleh and McMinn, 2011), pH 
(Behrendt et al., 2020), and nutrients (Nagi 
et al., 2023). Furthermore, due to the com-
plex interconnectivity of cellular processes, 
chlorophyll a fluorescence, emitted during 
photosynthesis, serves as a window into 
the inner workings the cell that go beyond 
the chloroplast (Bailleul et al., 2015). Data 
derived from such measurements will form 
the communication “language” that the 
photosynthetic microorganism uses in this 
two-way conversation.

One may ask at this point: given that the 
method of communication exists, why are 
there no biofeedback photobioreactors in 
use? To appropriately answer this question, 
there are two challenges with chlorophyll 
a fluorescence that need to be pointed out: 
first, the signal is complex and arguably not 
fully understood; it’s widely accepted that it 
provides rich insight into the cell’s biology, 
but we only understand small fractions of 
that signal. Second, each species has its own 
unique biological response, which results 
in a fluorescence signal which, to a large 
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extent, is unique to that species. While 
not an easy undertaking, this is actually a 
solvable problem. It is worth giving some 
examples of fluorometry data used for 
optimisation, such as growth temperature 
(Ranglová et al., 2019), glycogen content 
(Lakatos et al., 2021), biomass production 
(Masojídek et al., 2011), and generally as 
an indicator for nutrient stress (Parkhill et 
al., 2001). A strategy similar to that used in 
medical sciences (Sagar et al., 2020) could 
be applied here. Researchers could utilise 
supervised machine-learning approaches 
such as neural networks, random forests, 
or similar architectures, combined with 
systematic experimentation. By exposing 
microorganisms to a wide range of environ-
mental conditions, researchers could record 
specific fluorescence responses, generating 
data that could train machine-learning 
algorithms for more accurate classifica-
tion. This experimental strategy does not 
require significant a priori knowledge of 
the microalgae properties or photo-physi-
ological properties; it requires, however, an 
additional measurement of cell health which 
will be used to classify the fluorescence 
measurements. This approach will provide 
a “Rosetta stone”-type of deconvolution of 
the chlorophyll signal, enabling the two-way 
communication. Partial success has already 
been shown in using machine-learning to 
deconvolute the significance of fluorescence 
data from satellite imagery (Bartold and 
Kluczek, 2023; Liu et al., 2022) and ter-
restrial measurements (Rybka et al., 2019). 
This can be taken a step forward by using a 
generative adversarial network trained on 
the experimental data to generate signals 
that the organisms can likely produce but 
have not been recorded in the initial dataset 
(Chen et al., 2022).

Assuming the means of communication 
are resolved at single-cell level, an additional 
complication arises: the unavoidable het-
erogeneity found in a population of cells. 
Realistically, a biofeedback system will work 
with asynchronous and heterogeneous cell 
cultures. This means that at any given time, 
the population is composed of cells at differ-
ent stages of development, which will likely 
make signal deconvolution more difficult. 
Just as before, this is not an unsolvable 
problem.

Communication with populations: 
from 1 to many cells

In advancing the field of biofeedback pho-
tobioreactors, a key consideration is the 
heterogeneity inherent in populations of 
microalgae. As shown by the elegant use 
of a microscope fitted with a fluorometer 
(Trampe et al., 2011), microalgal populations 
exhibit considerable variation in fluores-
cence response among individual cells. When 
scaling-up the measurements, this variabil-
ity averages out and provides a single signal 
representing the entire population. More 
recent research demonstrates the utility of 
microfluidic photobioreactors in observing 
and cultivating microalgal cells at the single-
cell level — a crucial step in understanding 
population dynamics (Westerwalbesloh et 
al., 2019). In this context, the transition from 
individual-cell analysis to population-level 
communication presents unique challenges 
and opportunities. A single cell photobiore-
actor allows for the controlled cultivation 
of microalgae, providing a platform where 
individual cells or small aggregates can be 
studied in isolation under well-defined 
conditions. This approach is instrumental 
in discerning the responses of microalgae at 
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various developmental stages, and to varying 
environmental stimuli.

Understanding the nuances of individual 
cellular responses within a population is 
critical for developing a comprehensive bio-
feedback system. The rationale behind it is 
to clarify how complex signals coming from 
cells in different biological states will aver-
age when measuring the whole population. 
By integrating the insights gained from such 
microfluidic photobioreactor studies with 
machine learning algorithms, researchers 
can unravel the complex web of intercellular 
communication and response mechanisms. 
This integration can lead to the development 
of sophisticated biofeedback systems that 
can dynamically adapt to the needs of not 
just individual cells but entire populations.

The heterogeneity observed in microalgal 
populations underscores the importance of 
considering individual cellular states and 
responses. This knowledge is fundamental 
for achieving effective two-way communica-
tion in biofeedback systems. It enables the 
prediction and modulation of population 
behaviour, thereby optimising the overall 
efficiency of the photobioreactor.

Significance and innovation: redefining 
biotechnological frontiers

The development of biofeedback photobio-
reactors when completed will not merely 
be an incremental advancement but a sig-
nificant leap in biotechnological innovation. 
This approach holds the promise of address-
ing one of the most enduring challenges in 
photosynthesis research: optimising light 
energy utilisation in varying environmental 
conditions in real-time. The significance of 
this innovation extends beyond academic 
curiosity, potentially revolutionising indus-
tries reliant on photosynthetic organisms, 

such as biofuel production, pharmaceuticals, 
and food technology.

Innovatively, this technology leverages 
the dynamic nature of photosynthesis — a 
departure from traditional static approaches. 
The term “dynamic nature” refers specifically 
to the capacity of biofeedback systems to 
adaptively respond in real time to variations 
in photosynthetic activity. This contrasts 
sharply with “static approaches,” which 
represent conventional methodologies that 
lack the capability to adjust to immediate 
changes in cellular responses. The introduc-
tion of machine-learning and generative 
adversarial networks to interpret chloro-
phyll a fluorescence signals represents a 
novel strategy, enabling a more nuanced 
understanding and control of the photosyn-
thetic process. This innovation could lead 
to unprecedented improvements in energy 
efficiency, reducing operational costs and 
enhancing sustainability in biotech indus-
tries.

Challenges and limitations
The history of biofeedback photobioreactors 
and optimising photosynthetic efficiency 
has been marked by several key develop-
ments. Initial efforts in this field were 
primarily focused on understanding the 
basic principles of light interaction with 
photosynthetic organisms and the design 
of photobioreactors for efficient microal-
gae growth (Ahmad et al., 2021). Over time, 
researchers have explored various reactor 
designs and light-management strategies to 
improve photosynthetic efficiency (Janssen 
et al., 2003). This has included innovations 
in reactor configurations and light-distri-
bution methods, reflecting a continuous 
evolution of the technology. Noteworthy 
photobioreactor designs include tubular 
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systems (Molina et al., 2001), flat panel 
(Slegers et al., 2011), thin-layer cascade 
(Villaró et al., 2022), revolving algal biofilm 
(Schaedig et al., 2023), and even hybrid 
designs that separate the dark and light 
reactions (Deprá et al., 2019). However, the 
integration of biofeedback mechanisms to 
dynamically adjust to the photosynthetic 
organism’s needs, represents a more recent 
and significant advancement in this area.

The technological challenges in the devel-
opment of biofeedback photobioreactors 
for optimising photosynthetic efficiency 
are multifaceted. They involve complexi-
ties in accurately interpreting chlorophyll a 
fluorescence data, which necessitates sophis-
ticated algorithms and sensing technologies. 
Additionally, designing photobioreactors 
that can dynamically adjust lighting, tem-
perature, nutrients and other conditions 
in real time to optimise photosynthesis 
presents engineering challenges. There are 
examples with partial success where bio-
feedback has been experimented with (Ifrim 
et al., 2013; Melnicki et al., 2013) but without 
use of machine-learning tools and using a 
limited number of parameters. The next 
generation of such systems must be capa-
ble of rapidly responding to the changing 
photosynthetic and biological needs of the 
organisms, requiring advanced control sys-
tems and integration of multiple feedback 
mechanisms. This necessitates a convergence 
of biotechnology, sensor technology, and 
control engineering, each with its own set 
of technical hurdles.

Potential outcomes and impact:  
a paradigm shift in photosynthetic 

efficiency
The proposed biofeedback photobioreactor 
holds the potential to significantly reduce 

energy losses in algal photosynthesis, 
marking a paradigm shift in the industry. 
This breakthrough approach could lead to 
unprecedented energy savings and enhanced 
production predictability in algal biotech. 
Moreover, it offers a direct method to 
answer scientific queries about photobiol-
ogy, using the language of light deciphered 
from the organisms themselves.

The successful implementation of this 
technology could revolutionise the field 
of algal biotechnology, contributing to 
more sustainable practices. It would set a 
new standard for photosynthetic efficiency, 
potentially impacting a wide range of 
applications, from biofuel production to 
pharmaceuticals. The project’s interdisci-
plinary nature could also pave the way for 
novel research methodologies, fostering 
advances across various scientific disciplines.

Conclusion: forging a new path 
in photosynthetic research and 

biotechnology
The development of the proposed technol-
ogy would represent a significant leap in 
the fields of photosynthetic research, algal 
biotechnology, and data analytics. This 
approach not only promises enhanced 
efficiency in energy conversion but also 
sets a new benchmark for sustainable and 
predictable production systems. It under-
scores the importance of interdisciplinary 
collaboration and innovation in overcoming 
historical challenges in photobiology. As 
we stand at the cusp of this technological 
revolution, it is imperative to continue 
exploring and refining these novel meth-
odologies, potentially ushering in a new era 
of sustainable and efficient biotechnological 
solutions.
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