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Abstract 
An alternative approach to study light-matter interactions in nano-photonics is presented. This 
method is based on considering light and sample as a whole system and exploiting their 
symmetries. The mathematical formalism to systematically study symmetries of light beams is 
explained and particularly applied to vortex beams. Then, the method is used in two different 
problems. First, it is shown that vortex beams can be used to effectively turn any dielectric 
sphere into a dual material. Then, it is seen that the same light beams can be used to excite 
whispering gallery modes on free space, thus avoiding the evanescent coupling typically used in 
these kinds of problems. 
 
 

Introduction 
In 1959, Richard Feynman gave a seminal 
lecture entitled “There’s Plenty of Room at 
the Bottom” which pushed scientists to set 
out on the journey of controlling light-matter 
interactions at the nano-scale (Feynman, 
1960). Since then, nanotechnology has rapidly 
developed. Nowadays it is unconceivable to 
think of any new information devices whose 
circuits are not nano-metric. Whereas 
nanoelectronics is a well consolidated 
technology producing transistors of less than 
30 nm, nanophotonics has yet to overcome 
some drawbacks to be fully competent. One 
of the most important ones is overcoming the 
diffraction limit of light. Most of the efforts in 
this direction have been happening in the 
field of plasmonics. In fact, lots of authors 
consider that nanophotonics should be based 
on metallic nano-plasmonics (Brongersma, 
2010). Plasmonics is the science that studies 
the interaction between light and free 
electrons on a metal (Maier, 2007). The first 

theoretical studies in plasmonics were done in 
the 1950's (Bohm, 1951; Pines, 1952; Bohm, 
1953; Ritchie, 1957), and the first 
experimental realisations in the 1970's (Otto, 
1968; Kretschmann, 1971). Since then, the 
field has successfully expanded and nowadays 
its applications have spread over many 
different fields (Lakowicz, 2006; Atwater, 
2010; Juan, 2011).  In general, plasmonics 
uses a sample-based perspective to overcome 
the diffraction limit of light. That is, given a 
fixed incident beam, samples are engineered 
(shape and materials) so that the desired light-
matter interaction takes place. Fig. 1 shows 
the intensity profile of a typical incident beam 
used to excite plasmonic structures. A beam 
of light with such intensity profile is known as 
Gaussian beam, since its intensity profile can 
be described with a 2-dimensional Gaussian 
function (Pampaloni 2004). Now, there is no 
doubt that precise fabrication and 
characterization of samples play a huge role in 
designing the current plasmonic technologies. 
Interestingly, the spatial profile of the incident 
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beam is also a key factor in the light-matter 
interaction.  

 
Figure 1: Intensity profile of a Gaussian beam. 
The intensity is maximum in the areas 
coloured in yellow, and minimum in those 
coloured in black.  
 
However, most of the work in the field is 
done with Gaussian beams or plane waves. In 
this article, it will be shown that more 
elaborated beams of light can be used to 
retrieve plenty of additional information from 
nano-structures. An illustrative example is the 
Stimulated Emission Depletion (STED) 
microscopy. STED microscopy was invented 
by Stefan Hell and co-workers in 1994 (Hell, 
1994). It is one of the so-called super-
resolution microscopy methods, as it can 
resolve defects as tiny as 30nm (Rankin, 2009; 
Rittweger, 2009). Its working principle is 
detailed in Hell (1994, 2007), but the main 
idea is the following one. Probing a sub-
wavelength specimen with a Gaussian beam 
results in a blurry image. Nevertheless, the 
combined use of a Gaussian and a doughnut-
shaped beam results in a much neater image. 
That is, the use of a doughnut beam turns out 
to be crucial in order to overcome the 
diffraction limit of light. There are different 
kinds of doughnut-shaped beams, but the 
ones used in STED are called vortex beams 
(Molina-Terriza, 2007; Yao, 2011). Vortex 
beams are defined by their optical charge l, 
which is an integer number. The optical 

charge l accounts for the number of times 
that the phase of the beam wraps around its 
centre in a 2  circle. As an example, four 
different vortex beams are shown in Fig. 2.  It 
can be seen that when l = -1, the phase goes 
from 0 to 2  one time in counter-clockwise 
direction. In contrast, when l = 3, the phase 
goes three times from 0 to 2  in a clockwise 
direction.  Currently, vortex beams are mostly 
experimentally generated with Spatial Light 
Modulators (SLMs). Check Bowman (2011) 
and references therein to see how vortex 
beams are generated and what their principal 
applications are.  

 
Figure 2: Intensity and phase profiles of 
vortex beams with optical charges l = -1, 0, 1, 
3 respectively. For the intensity plots, yellow 
indicates maximum and black minimum. For 
the phase, white means 0 phase, and black 
means 2 . 
 
Note that the definition of a vortex beam and 
its optical charge are independent of the 



JOURNAL AND PROCEEDINGS OF THE ROYAL SOCIETY OF NEW SOUTH WALES 
Zambrana-Puyalto – Probing the nano-scale 

57 

polarisation. However, for many applications 
in nano-photonics (STED microscopy is one 
of them), vortex beams need to be tightly 
focused. When that is the case, vortex beams 
become much more complex. In fact, in that 
regime, the definition of the phase singularity 
is polarisation-dependent. This is what many 
authors have called spin-to-orbit conversion 
(Zhao, 2007; Vuong, 2010; Rodriguez-
Herrera, 2010; Bliokh, 2010).  Then, 
characterising vortex beams in terms of their 
symmetries becomes enormously useful. It 
allows for a systematic study of the beam 
without the need of considering different 
focusing regimes (paraxial or non-paraxial). 
Next, the bases to systematically characterise 
the symmetries under which a beam is 
invariant are given. Then, a general method to 
design structures using the spatial properties 
of light is sketched. Finally, two examples of 
the method are given. Firstly, it is shown that 
dielectric spheres can behave as dual materials 
for certain ranges of parameters. 
Furthermore, the role that the angular 
momentum of light plays in this process is 
unveiled. Secondly, it is shown that 
Whispering Gallery Modes (WGMs) can be 
excited on dielectric spheres without the need 
of evanescent coupling.  

Vortex beams and symmetries 
A vortex beam can be described with the 
following expression: 

             (1) 

where (

 

ρ,φ,z) are the cylindrical coordinates, 
Aρ,l  is a normalisation constant, w0 is the 
beam waist, l is the charge of the vortex, k is 
the wavenumber, and 

                                               (2) 
is a circularly polarised vector, with p=±1, for 
left (+) and right (-) circular polarisations 
respectively. A harmonic 

 

e−iϖt

 
is assumed 

throughout the remaining part of the article. 
The beam in Eq. (1) is a solution of the 

paraxial equation (Lax, 1975).  Its intensity 
and phase can be described with the plots on 
Fig. 2 for the corresponding l’s. Now, the first 
thing that one notices is that both the 
intensity and phase are symmetric under 
translations along the z axis. Mathematically, 
it means that EEl,p is an eigenstate of Tz, the 
translation operator. In fact, using Noether’s 
theorem (Noether, 1918) and group theory 
(Tung, 1985), it can be proven that EEl,p must 
also be an eigenstate of Pz, the linear 
momentum along the z axis, as it is the 
generator of linear translations: 

                                                   (3) 

where k can be identified with the 
(eigen)value of Pz. Despite being less intuitive, 
it can also be proven that EEl,p  is symmetric 
(i.e. it is an eigenstate) under rotations around 
the z axis. Now, because the angular 
momentum is the generator of rotations, the 
following relation holds: 

 

Jz El,p[ ] = l + p( )El ,p
                                           (4) 

With (l+p) being the (eigen)value of the 
angular momentum. Finally, it can also be 
proven that EEl,p  is symmetric under 
generalised duality transformations (Jackson, 
1998). Then, because the helicity operator is 
the generator of duality transformations 
(Calkin, 1965), the following equation holds 
in the paraxial approximation: 

                                                    (5) 

where p is the (eigen)value of helicity. Now, 
there are different ways of mathematically 
describing non-paraxial vortex beams. One of 
the approaches is using the aplanatic model of 
a lens (Novotny, 2006) to compute the non-
paraxial expression (Bliokh, 2011). Here, the 
symmetric properties of vortex beams will be 
exploited to compute their non-paraxial 
expression in a straight-forward manner. In 
order to do that, EEl,p  are expanded as a 
general superposition of Bessel beams BBp,m,k. 
Bessel beams are a general basis of solutions 
of Maxwell equations. That is, any field 
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fulfilling Maxwell equations can be 
decomposed as a superposition of Bessel 
beams. They are also eigenstates of Pz, Jz, , 
therefore, they can be used to describe EEl,p  in 
the paraxial approximation: 

                                              (6) 

where m=l+p,  and ak are some coefficients 
that modulate the superposition and depend 
on how tightly the vortex beam is focused. 
The general expression of Bessel beams, as 
well as their paraxial approximation can be 
found in Fernandez-Corbaton (2012).  Note 
that due to the fact that both  EEl,p  and BBp,m,k. 
are eigenstates of Jz, , only a 1-dimensional 
integral has been needed. In the next sections, 
the symmetries of these beams will be 
exploited to demonstrate some effects which 
are unachievable with Gaussian beams (or 
plane waves). 
 

Scattering control 
As mentioned in the introduction, the typical 
approach to design nano-circuits or nano-
materials it the following one. The nano-
structure is characterized by its scattering 
matrix S. This scattering matrix is a function 
of many geometrical and material properties 
of the system, S(g,m) where g and m are 
general sets of variables describing the 
geometrical and material properties of the 
structure. S(g,m) is independent of the 
excitation beam. Then, the response of the 
structure to an incoming field EEin can be cast 
as a convolution of  S(g,m)  with EEin: 

 

E out (r) = S(g,m)∗E
in( )(r)                                 (7) 

Since the properties of the structure do not 
depend on EEin  and the incoming field is well-
known (a Gaussian beam or a plane wave), 
the light-matter interaction is reduced to a 
complete characterization of the scattering 
matrix  S(g,m) . Then, adjusting the geometry 
or material of the structure, a controlled 
interaction can be carried out. Nevertheless, 

this process is computationally expensive. 
Symmetries can be used to get around this 
problem. Instead, a highly symmetric 
structure whose scattering matrix is well-
known can be chosen as the structure. Now, 
given this limitation, the sought interaction 
can be obtained by modifying the plane wave 
content of the excitation beam in a controlled 
manner. That is, instead of controlling EEout  
with the geometry and materials of the 
structure, the interaction is controlled with 
the incoming field  EEin: 

 

E out (r) = d3k i exp(ik i ⋅ r)∫ S(g,m)∗E
in
(k i)( )(r) 

                (8) 
where kki are each of the different plane waves 
that take part in the superposition, and EEin(kki) 
is the Fourier transform of the incident field, 
which modulates the plane wave 
decomposition. Symmetries play a double 
role here. First, they simplify the scattering 
matrix of the structure. Second, they bind the 
values that EEout can take. That is, when the 
symmetries of EEin are matched with the 
symmetries of the sample, then EEout must 
preserve the symmetries of EEin. For example, 
if the sample is cylindrically symmetric and 
EEin is a Bessel mode BBp,m,k, then EEout  will have 
the same Jz value: 

 

E out (r) = dk '∫ ak',p Bp,m,k' + ak ',−p B−p,m,k '( )            (9) 

but in in principle the helicity value p could 
change and also new k components could be 
created. Next, two applications of this 
conceptual method are given. First, it is 
shown that a non-dual material can be turned 
effectively into a dual one if the proper vortex 
beam is chosen as illumination. Secondly, it is 
seen that vortex beams can excite WGMs, 
without the need of any evanescent coupling. 
 

Inducing dual behaviour 
A dual material can be defined as a material 
that preserves helicity upon scattering 
(Fernandez-Corbaton, 2013a; Zambrana-
Puyalto, 2013c). The definition stems from 
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the fact that helicity is the generator of 
generalized duality transformations. Recently, 
it has been proven that such a macroscopical 
material can only exist if the electric 
permittivity and magnetic permeability of all 
its subparts have a constant ratio (Fernandez-
Corbaton, 2013a): 

                                                       (10) 

Interestingly, the microscopic Maxwell 
equations are not symmetric under duality 
transformations, as there are no magnetic 
monopoles in the universe. However, in the 
macroscopic approximation, Eq. (10) is 
enough to grant the material with a dual 
behaviour. Dual materials are useful for many 
different applications. They can be used to 
reduce the backscattering of samples 
(Fernandez-Corbaton, 2013a; Zambrana-
Puyalto, 2013b), to create perfect optical 
rotators (Fernandez-Corbaton, 2013b), or to 
scatter light without changing the polarisation 
(Fernandez-Corbaton, 2013a), among others. 
Nevertheless, Eq. (10) is still very restrictive, 
and some other approximations can be done. 
 

 
Figure 3: Plot of log|Tp(r,nr)| as a function of 
r and nr. The purple curve indicates the 
combination of parameters for which the 
sphere is dual. The incident field is a Gaussian 
beam with a wavelength of =633nm.   
 
It was analytically proven in Zambrana-
Puyalto (2013c) that if certain combinations 

of {r,
  

, nr} are used, non-dual dielectric 
dipolar particles can behave as dual under a 
Gaussian excitation. r is the radius of the 
sphere, is the wavelength of the excitation, 
and nr is the relative refractive index of the 
particle with respect to the medium 
surrounding it. This phenomenon is 
summarised in Fig. 3. A Gaussian beam 
excites a sphere at =633nm and the 
scattering is split into its two helicity 
components. Then, the component with the 
same helicity as the incident light is divided 
over the opposite one. This defines an 
adimensional transfer function Tp(r,nr), and its 
logarithm is depicted in Fig. 3. When  
log|Tp(r,nr)| → –∞, then the sphere behaves 
as dual. As it can be seen in the horizontal 
axis of Fig. 3, the sphere is indeed dipolar (its 
size is much smaller than the wavelength). In 
fact, the same results have been 
experimentally demonstrated very recently by 
Geffrin (2012), Fu (2013) and  Person (2013).  
 

 
Figure 4: Plot of log|Tp(r,nr)| as a function of 
r and nr. The incident field is a vortex beam 
EEl=4,p=1 at =633nm. Again, the purple 
curves indicate the parameters for which the 
sphere is dual. Note that the size of the 
sphere is not dipolar in this case, as r varies 
from 250 to 550nm. 
 
Now, vortex beams can be used to extend 
this behaviour to particles of any size. The 
idea is that even though the particle gets 
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bigger, the scattering of the first multipolar 
orders can be cancelled by chosing the 
corresponding vortex beam. In Fig. 4, a 
vortex beam EEl=4,p=1 is used, and as a 
consequence particle of almost 1 m of size 
can behave as dual. Clearly, the choice of a 
vortex beam simplifies the problem. It would 
be much more complex to design a 
metamaterial of that size with similar features.  
 

Excitation of Whispering Gallery 
Modes 

Whispering Gallery Modes (WGMs) are 
widely used in physics. Their incredibly high 
Q factors make them perform very well to 
probe any sort of disturbance in the 
environment (Schiller, 1991; Oraevsky, 2002; 
Vahala, 2003). Also, they can be used in 
quantum information processes, such as 
quantum optomechanics (Lee, 2010; 
Forstner, 2012). In Oraevsky (2002), it is 
demonstrated that a plane wave cannot excite 
a WGM. Instead, an evanescent wave must 
be used to excite one of these modes. WGMs 
are actually modes of light with very large 
value of  Jz , of the order of 1000 occasionally 
(Schiller, 1991; Oraevsky, 2002). An 
alternative way of exciting WGMs without 
the need of using fibers or prism to create 
evanescent waves is sketched here. It is based 
on the fact that spheres are symmetric under 
rotations around the z axis. Thus, if a sphere 
is excited with a vortex beam with a large 
value of Jz, the scattered field must preserve 
that large number of Jz (Zambrana-Puyalto, 
2012; Zambrana-Puyalto, 2013a).  However, 
the incident beam must fulfil another 
condition in order to excite a WGM with a 
high Q factor. The Q factor of the mode 
drastically depends on the coupling between 
the incident beam and the sphere. This 
coupling is modelled by the so-called Mie 
coefficients (Bohren, 1983). In order to 
ensure a good overlap between the incident 

vortex beam and the WGM, the following 
condition between {r,

 
,nr} needs to be 

fulfilled (Zambrana-Puyalto, 2012; 
Zambrana-Puyalto, 2013c):  

 

r ≈ m
λf (nr )
2π

                                                     (11) 

where m is the value of Jz of the WGM, and 
f(nr) is a function of the relative refractive 
index that can be calculated (Zambrana-
Puyalto, 2013c). When both conditions are 
fulfilled, a high-Q WGM can be excited with 
a vortex beam, without the need of carrying 
out any evanescent coupling.  

Figure 5: Intensity plot of a scattered WGM 
of order m=15. Yellow means maximum 
intensity, and black minimum. The dashed 
circle depicts the position of the sphere. In 
order to obtain such a scattered field, an 
incident vortex beam EEl=14,p=1 propagating in 
the z axis has been used. The excitation is at

=633nm, and the particle is made of a 
material such that nr=1.5, which implies that 
f(nr)=0.8 (Zambrana-Puyalto, 2013c). Its 
radius is  r=1.2 m. 
 

Conclusions 
It has been shown that the symmetries of 
light can be used to control the scattering of 
nano-structures. In particular, vortex beams, 

 

x 

z 
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which can be symmetric under rotations, 
translations, and duality transformations, have 
been used to control two scattering events. 
Firstly, they have been used to induce duality 
symmetry in an arbitrary large dielectric non-
dual sphere. And secondly, they have been 
used to excite WGMs without the need of 
using evanescent couplings. 
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