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From Rats to Robots: Engineering a Functional
Biomimetic Navigation System
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Abstract: The field of robotics is in a state of transition from traditional fixed robots
located in industrial settings to mobile robots in domestic homes. Much of the new generation
of mobile robots is produced using low cost hardware, making them unsuitable platforms
for deploying the traditional probabilistic algorithmic approaches to mapping and navigation,

which require accurate but expensive sensors such as scanning lasers.

Animal navigation

systems have been under investigation for many years as a potential source of inspiration
for creating alternative robot navigation systems. This paper presents an overview of work
pursuing the idea that animals, specifically rodents, make ideal models for creating practical

robot navigation systems.

Keywords: Navigation, robots, rats, biomimetics, SLAM

INTRODUCTION

Over the last decade robotics has been under-
going a transformation, with the traditional
industrial robots used in manufacturing lines
since the 1960s being supplanted by a new breed
of mobile robots. These mobile robots are being
used in increasing numbers in both domestic
and industrial applications, and are now, in
numerical terms, the most common form of

robot (UNECE, 2005).

Perhaps one of the key reasons for this
robot ‘revolution’ is the changing image of
such robots; in the past regarded as novelty,
luxury items, some are now regarded as prac-
tical labour-saving machines. Vacuum cleaner
robots produced by companies such as iRobot
and FElectrolux, while not perfect, can in some
households produce a net labour saving. By the
end of 2004 there were an estimated 1.2 million
personal domestic robots in service around the
world according to the United Nations Eco-
nomic Commission for Europe survey; of these
one million were vacuum cleaner robots. Half of
these one million were ‘installed” during 2004,
giving an indication of the rapid growth of do-
mestic mobile robots. Lawn mowing robots are
also entering into homes, although with a much
slower uptake, with 46,000 units worldwide at
the end of 2004 (UNECE, 2005). Predictions
from the same source indicate worldwide sales
of approximately seven million robots in the

period 2005 to 2008. This figure includes 4.5
million domestic robots with an estimated value
of three billion US dollars, and 2.5 million
entertainment and leisure robots with an esti-
mated value of 4.4 billion US dollars. More
speculative estimates predict as many as 39
million domestic robots being sold by 2010
(Horizons, 2004).

While such numerical growth is impressive,
the sobering fact remains that the majority
of these robots are essentially dumb machines.
Most vacuum cleaner robots, for example, clean
a room by following pre-programmed random
paths and require, as admitted on one major
manufacturer’s website, about four times as
long to clean the room as a person. Most
cannot navigate between rooms, requiring a
human to reposition them. Many of the more
capable systems require a user to pre-position
beacons around the home that the robot can
use to navigate. The ultimate vacuum cleaner
robot, one that can ‘out of the box’ explore,
learn, and then efficiently vacuum an entire
house, has not yet transpired. One of the main
reasons is certainly the difficulty of performing
all these tasks, a problem which is described in
the following section.

THE NAVIGATION CHALLENGE

A robot that moves around its environment
faces a number of significant navigation chal-
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lenges. Onmne of the most significant of these
problems is known within the robotics liter-
ature as the Simultaneous Localisation And
Mapping (SLAM) problem (Dissanayake, New-
man, Clark, Durrant-Whyte and Csorba, 2001).
When placed in an unknown environment, a
robot must be able to explore its surroundings
in order to learn the layout of the environment,
creating a map of the environment. At the
same time, however, the robot must also use
that map to keep track of where it is in the
environment, a process known as localisation.
The two processes of mapping and localisation
are interdependent — a map cannot be created
without knowledge of the robot’s current loca-
tion in the environment, and a robot’s location
within the environment cannot be calculated
without a map of the environment. The SLAM
problem has been the focus of a very large
amount of research in the robotics community
over the past two decades.

There is a number of reasons why the SLAM
problem is so difficult. A mobile robot can be
thought of as a mobile sensor platform, with
sensors that vary in type and capability. All
of these sensors have limitations and produce
readings that are noisy. The ubiquitous laser
range finder, probably the most widely used
sensor in robot navigation research, is generally
regarded as highly accurate and reliable. This
sensor measures distances to obstacles but is
neither exact nor infallible.
only accurate within a margin of error. Mea-
surements can also be grossly incorrect, such as
when the laser ‘sees’ through glass wall, or when
the light beam reflects off multiple surfaces
before returning to the sensor. Bright sunlight
in outdoor settings or even through windows in
indoor settings can disrupt the sensor.

Measurements are

Other range sensors such as sonar (ultra-
sound) sensors have their own disadvantages.
Sound waves from a sonar sensor project out-
wards in a cone-like manner from their point of
origin. The ‘range’ reading for a sonar sensor is
the range to the closest reflecting object within
this cone. The wide beam results in significant
uncertainty regarding the exact position of a
detected obstacle (Moravec and Elfes, 1985).
Surfaces with certain textures or surfaces that

do not transect the sonar cone at ninety degrees
may not even reflect sufficient sound energy
back to the sensor, meaning they are not de-
tected. Like a laser sensor, multipath reflections
can occur, producing misleading range to obsta-
cle readings.

Vision-based sensors have their own set of
limitations. Cameras are very poor at repre-
senting colours in images. A typical approach to
dealing with this is to reduce the image domain
to greyscale images, but this still leaves the
problem of dealing with light intensity variation,
which is an especially difficult problem in out-
door environments. There are techniques for
dealing with illumination change but they are
all partial, rather than complete, solutions to
the problem (Buluswar and Draper, 2002, Tews,
Robert, Roberts and Usher, 2005). Depending
on the type of camera used, camera images can
also be distorted, leading to further complica-
tions and inaccuracies when using them as a
robotic sensor.

One of the most familiar concepts to re-
searchers working with mobile robots is that of
odometric drift. Wheeled robots are equipped
with rotational encoders that measure the
movement of each wheel. However, wheel slip
means that the encoder’s measurement of the
amount of wheel movement does not always
correspond exactly to the movement of the
robot along the ground. Wheel slip is un-
avoidable — theoretically it is impossible for
the robot to even start moving without some
amount of slip. Wheel slip means that even
with a ‘perfectly’ calibrated system, over any
significant amount of time slight measurement
errors due to wheel slip will accumulate to
unmanageable proportions. The problem is
particularly significant in environments with
varied ground surface textures, such as outdoor
environments over rough or loose terrain.

Using more expensive, higher quality sensors
and compensatory algorithms can reduce the
impact of many of these sensing problems.
A more expensive camera may have less lens
distortion, and a higher quality laser will return
more accurate and precise readings. Sensor
fusion between multiple types of range sensors
can help reduce the effects of an occasional
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incorrect measurement from one particular sen-
sor. Engineers can design the mechanical wheel
drive system or tyres to minimize the amount of
slippage. A Global Positioning System (GPS)
can be used to remove the dependence on
integration of wheel encoder values over time
to update the estimate of the robot’s position.

However, many of these ‘solutions’ only work
in certain environments, or add their own prob-
lems such as expense. The use of GPS is a good
example; standard GPS does not work indoors
and is not completely reliable in some built
up outdoor environments (such as Manhattan,
New York). In outdoor environments GPS
can also ‘drop out’ long enough to severely
test any navigating robot that is not equipped
with a robust alternative navigation system.
The issue of cost is also very relevant when
considering low cost domestic robots, where
expensive sensors or significant computational
power is not possible.

What is inescapable is the fact that animals
and humans manage to navigate in large and
complex real world environments with a set
of inexact, imperfect sensors. While engineers
have developed sensors which are increasingly
accurate (and often more expensive), it is obvi-
ous that in many cases nature has managed to
solve the navigation problem from a completely
different direction. How animals navigate so
effectively poses a very interesting research
question.  In addition, from a commercial
perspective it is desirable that robot systems
be able to function with simple, inexpensive
Sensors.

The core SLAM problem is only one of many
that must be solved by an autonomous mobile
robot. When placed in a new environment,
a robot must be able to effectively explore
the environment, rather than staying in one
section of the environment. If the robot is to
perform any sort of useful navigation task, it
must also be able to navigate to goal locations
in the environment. Real world environments
are not static, meaning that in the long term
a robot must be able to adapt or at least
cope with changes in the environment. Mobile
robot research has been biased towards solving
the SLAM problem, probably at least in part
because it can be harder to investigate these

related problems if a robot cannot keep track
of where it is. Consequently, much exploration
and navigation research has been performed
in simulation, with relatively little research on
implementing these algorithms on real robots.
In many cases, the focus on the SLAM problem
has led to piecemeal attempts to implement
goal recall and adaptation abilities, rather than
consideration of the entire mapping and nav-
igation problem from the start. While there
are robots that successfully solve SLAM, or
individual related problems such as exploration
or goal navigation, there are very few robot sys-
tems that have been successfully demonstrated
solving the complete navigation problem in real
world environments.

THE RATIONALE FOR A
BIOMIMETIC APPROACH

Many animals and insects possess well docu-
mented formidable navigation abilities. By per-
forming research into the navigation capabilities
of animals, researchers are able to answer two
important questions: what exactly can animals
achieve using their navigation systems, and how
do they do so. The answer to the first question
is important because it demonstrates that many
impressive feats of navigation can be achieved
with a surprisingly simple set of sensors and
relatively low computational resources. For
instance, it is not necessary to have a high
fidelity laser range finder to navigate effectively
in a range of environments — most animals do
not possess sensors that can tell them the range
to obstacles varying in range from a few millime-
tres to ten or more metres, to a precision of ten
millimetres (except bats). Experiments have
demonstrated that rats can continue to navigate
effectively even in pitch blackness, with the
implication that some navigation systems can
cope without a constant stream of feature rich
information (Quirk, Muller and Kubie, 1990,
Mizumori and Williams, 1993). The answer to
the second question necessarily involves theories
and models of the neural mechanisms in the
animal brain used for performing navigation. It
is these models that roboticists can draw upon
to create their own artificial robotic navigation
systems.
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Rodents

Rodents are one of the most studied animals in
the field of biological mapping and navigation.
Compared to other animals and even humans,
their navigation capabilities are relatively well
characterised. Furthermore, there has been
much progress in understanding the neural basis
of their navigation capabilities. The part of
the brain thought to be responsible for much
of a rodent’s navigation, the hippocampus, is
one of the most studied brain regions of any
mammal. Consequently, there are a number
of well established models of how navigation is
achieved neurally in rodents, although much is
still uncertain.

One of the core concepts in navigation
research is that of the cognitive map, which
was introduced in early rat studies by Tolman
(1948). This idea relates to observations of rats
released in an environment with no reward food
source. When placed back in the environment
along with food sources at a later time, the
rats were able to use information learned in the
previously foodless environment to help them
navigate to food sources, hence exhibiting a
form of latent spatial learning. The cognitive
map is often theorised to be a spatial reference
that some animals create and use to navigate in
their environments.

One of the first major neural discoveries with

respect to navigation in rodents was that of
place cells in the rodent hippocampus, which
fired preferentially when the animal was at a
particular spatial location (O Keefe and Dostro-
vsky, 1971, O’Keefe and Conway, 1978). Over
the next three decades, several other types
of spatial neuron were discovered, including
neurons that responded to the animal’s head
orientation, called head-direction cells (Ranck,
1984). Most recently, cells which fired at regular
grid-like intervals in the environment were dis-
covered and dubbed grid cells (Hafting, Fyhn,
Molden, Moser and Moser, 2005, Fyhn, Molden,
Witter, Moser and Moser, 2004). However,
since grid cells were only discovered recently,
most of the models of rodent hippocampus
deployed on robots to date have focussed on
head-direction and place cells.

Bees

Because insects (and correspondingly insect
brains) are generally much smaller than mam-
mals, research on their navigation systems is
biased towards observational work rather than
towards recording cells in their tiny brains,
which is quite difficult to do. Consequently
most of the theories and models of insect
navigation have been developed from careful
observation of their behaviour in a wide variety
of experiments.

forewing
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three simple eyes

two compound eyes
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Figure 1. Anatomy of a worker bee.
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Honey bee workers are equipped with a
range of different sensors to help them fly many
hundreds of kilometres during their lifetime of
foraging for nectar and pollen. They possess
two types of visual sensors, two large compound
eyes and three much smaller ‘simple’ eyes ar-
ranged in the shape of a triangle on the top of
the bee’s head. The compound eyes detect both
light and colour and have a large field of view.
The simple eyes are sensitive to light but can’t
resolve images. Non-visual sensors include the
antennae on the bee’s head which perform both
odour detection and flight speed measurement.
These features and others are shown in Figure 1.

Because honeybees start and finish at the
same location (the hive) during their foraging
trips, they are known as central-place foragers.
Typical foraging trips range up to two to three
kilometres from the hive. However, bees have
been observed foraging up to 13.5 kilometres
from their colony location, a huge distance when
considering the tiny size of the bee (Ratnieks,
2000, Frisch, 1967). Most models of bee navi-
gation have been developed by repeatedly sub-
jecting bees to experiments designed to isolate
one particular aspect of navigation behaviour,
such as the bee judging flight distances by its
apparent visual speed through the environment.
Reverse engineering the bee’s navigation sys-
tem in this way is not a perfect science, and
seemingly identical experiments can produce
very different results and interpretations. For
example, one of the dominant debates in this
field is whether bees possess some form of
cognitive map.

Ants

Desert ants regularly leave their nest and wan-
der significant distances into the desert around
them, following squiggly paths, only to then
return via a more or less straight line directly
back to their nest. In order to maintain an idea
of where they are relative to the nest, the ants
perform dead reckoning or path integration,
updating their estimate of where they are based
on their movement speed and direction. Exper-
iments by Muller and Wehner (1988) using the
species Cataglyphis fortis suggest that an ant
keeps track of the average of all directions in
which the ant moves, weighted by the distance
moved in each direction. The reference vector

used for calculating the new movement angle is
the previous homeward course direction. This
navigation system leads to only small errors in
most situations, except when an ant performs
sudden backward turns, which the experiments
show happens only rarely. Since the angular
errors are systematic, an equally large clockwise
and anti-clockwise turn results in the two gen-
erated errors cancelling out. The experiments
also reveal that the ants do not usually have a
direction bias during their foraging activities.

Ants also demonstrate robust coping strate-
gies for non-ideal situations when their nav-
igation strategy does not lead them back to
their exact nest location (for instance, a gust
of wind may have blown them off course). One
group of researchers (Wehner, Gallizzi, Frei and
Vesely, 2002) describe the navigation strategy
that desert ants have adopted to deal with
errors in their path integration process. When
returning to the nest from a foraging location,
the ants always use their home vector to return
to the supposed location of the nest. The home
vector is calculated during the outbound trip
using weighted angular averaging as described
previously. For long foraging trips out from
the nest, there is usually some dead reckoning
error, meaning the ant initially returns to a
location near, but not at the nest. To find
the nest, the ant starts this systematic search,
initially searching a small area but gradually
increasing this search area until it finds the
nest. In this way, ants are able to combine
two navigation strategies to produce highly
reliable overall navigation behaviour in their
desert environments.

DISCUSSION

When choosing a biological navigation system
upon which to base a robotic navigation system,
two main issues must be considered. The first
is how well the animal’s navigation capabilities
are known — for some animals such as rats,
bees and ants, their navigation capabilities have
been widely studied and there is at least some
consensus on what they can and cannot do.
This in turn can provide a roboticist with an
idea of what they can expect their robot to be
capable of if they get the modelling correct, and
what they may need to improve artificially.
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The second issue regards how well the neural
mechanisms underlying an animal’s navigation
abilities are known. It is here that rodents
stand out, as their brains, and specifically the
hippocampus, have been recorded from exten-
sively over the last thirty years. In contrast,
little is known about the neural mechanisms
behind navigation in insects. Because of ethical
considerations, relatively little is known about
navigation mechanisms in the brains of primates
or humans. Consequently, the body of work
described in this paper focussed on using models
of rodent navigation to produce a functional
robotic navigation system.

RatSLAM

There is a variety of theories on how ro-
dents map and navigate in their environments,

and consequently a range of models of these
processes. However there is some degree of
consistency across most models regarding the
major inputs, components, and functions. The
model described in this section follows the
general consensus that rodents use both exter-
nal and internal sensory input, and that they
have neural structures for representing their
spatial orientation and location. The model
and surrounding systems are called RatSLAM,
with ‘Rat’ referring to the biological animal
serving as inspiration, and ‘SLAM’ referring to
the robotics term for Simultaneous Localisation
And Mapping. The initial development of Rat-
SLAM drew heavily upon the preceding rodent
modelling work on robots (Arleo and Gerstner,
2000, Browning, 2001, Gaussier, Revel, Banquet
and Babeau, 2002). Figure 2 shows the overall
model structure.

Figure 2. Overall structure of the hippocampal model.
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The robot’s pose is encoded in two modules
known as the head-direction (HD) and place
networks. Competitive attractor networks are
used to represent the cell populations, which
are a type of neural network with highly inter-
connected excitatory and inhibitory links. The
key characteristic of an attractor network is its
ability to maintain stable clusters of active cells,
also referred to as ‘attractors’, ‘activity packets’
or ‘bumps’. The head-direction network en-
codes the robot’s orientation, the place network
the robot’s location. Ideothetic information in
the form of wheel encoder input drives the path
integration process, which updates the robot’s
state information in both the head-direction and
place networks. Allothetic information in the
form of camera images is processed to form a
representation known as the local view (LV),
which calibrates the robot’s state information
stored in the head-direction and place networks.

Representing Orientation

The core component of the spatial orienta-
tion model is an array of neural units or
‘cells’ roughly corresponding to biological head-
direction cells.  Each cell is tuned to be
maximally active when the robot’s orientation
matches the cell’s preferred direction. The cell’s
activity level reduces as the robot orientation
rotates away from this preferred direction. The
cell arrangement reflects their associated robot
orientations — nearby cells encode similar robot
orientations. When the ensemble activity of the
head-direction cells is viewed as a bar graph,
one can see a ‘packet of activity’ that resembles
a Gaussian curve. The centre of this ‘activity
packet’ represents the current perceived orien-
tation of the robot.

Without recalibration the robot’s percep-
tion of its orientation will gradually become
incorrect. Recalibration is a two step process;
the robot must first learn associations between
its orientation and the input from its external
sensors, and then use that information to cor-
rect its orientation state information when it
later receives that same sensory input. Once
the robot has learned the associations between

sensory input and orientation, it can use them
to correct its perceived orientation. Whenever a
familiar visual scene is encountered, activity is
injected into the head-direction cells associated
with the scene. If the robot’s perceived orienta-
tion is correct, this has the effect of reinforcing
its belief. However, if the current perceived
orientation is incorrect, the injected activity
initiates an alternative hypothesis regarding the
robot’s orientation, which then competes with
the current hypothesis under the competitive
attractor network dynamics.

Representing Location

The representation of the robot’s location is
encoded using a network of cells roughly cor-
responding to biological place cells. The place
cells are modelled as a two-dimensional matrix
of cells, with each cell tuned to be maximally
activated when the robot is at a specific lo-
cation. A coarse representation is used, with
the path integration system tuned so that each
place cell responds within a physical area of
approximately 250 mm by 250 mm.

Representational Limitations of Place
and Head-direction Cells

A series of mapping experiments were run using
a Pioneer 2 robot in a small environment with
artificial landmarks (Figure 3). The robot
was able to use the model of place and head-
direction cells to map and navigate the envi-
ronment over short time periods. However,
in longer experiments the network’s tracking
ability proved to be unstable. Over the period of
an hour the robot became lost and its perceived
location moved well outside its two by two metre
arena. The place cell model was able to keep the
robot correctly localised for short test durations
only. Because the robot was moving based on its
self-estimate of position, not its actual position,
a small error in pose usually compounded quite
rapidly and the tests had to be terminated
before the robot collided with objects outside
the arena.
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Figure 3. The first test environment was a two by two metre arena with coloured cylinders as
visual cues just outside the boundary of the arena.

The reason for the system failure was the
splitting of the robot’s pose (location and orien-
tation) representation. Active place cells repre-
sented the robot’s location in the environment
but not its orientation. Active head-direction
cells represented the robot’s orientation but
not location.  This splitting of the spatial
representation broke down when the robot was
put in a perceptually confusing situation.

This problem is illustrated in Figure 4. It
shows a schematic of the robot at two different
moments in time when it has associated its
current estimate of its location and orientation
(as encoded by active place and head-direction
cells) with seeing a certain two cylinders in the
environment. In this hypothetical environment,
there are actually two sets of these cylinders at
different locations. Figure 4b shows the robot
some time later when it encounters the same
visual scene again. The familiar visual scene

activates place cells and head-direction cells
representing the two locations and orientations
the robot has seen the cylinders from. In a
standard probabilistic robot mapping system,
the robot would now have two distinct pose
hypotheses, that is, two estimates of its pose.
Instead, it has two estimates of its location, and
two estimates of its orientation, but no binding
information about which location estimate goes
with which orientation estimate.

This lack of binding between location and
orientation leads to problems when the robot
continues moving. Ideally, as the robot then
continued to move forward, the location es-
timate in the left of Figure 4b would move
downwards and slightly to the left. However,
it also has a second orientation estimate associ-
ated with it, shown by the dotted arrow. The
system as it stands has no way of ‘knowing’
which orientation estimate is correct for each
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location estimate. Without appropriate bind-
ing, the separate representations of place and
orientation cannot sensibly maintain multiple
hypotheses of pose. The neurophysiological
separation of the place and head-direction cells
(O’Keefe and Conway, 1978, Ranck, 1984) ren-
ders this a spatial memory form of the binding
problem (Thiele and Stoner, 2003). Methods
such as updating the location estimates based
on the average orientation estimate (shown
by the short thick solid arrow) unsurprisingly
rapidly lead to the robot becoming lost. Other
possible techniques such as splitting each lo-
cation estimate into two, one for each ori-
entation estimate, can be implemented using

x..

standard probabilistic mapping algorithms, but
are impossible to implement using a standard
attractor network. While mechanisms such as
synchronisation have been proposed as a way
of binding the information of different neurons
in other domains (Gray, Konig, Engel and
Singer, 1989), we observed that there was a
simple modification of the model that offered
an elegant engineering solution to the spatial
binding problem (Milford, Wyeth and Prasser,
2004). The following section describes the pose
cells, developed to overcome the representa-
tional limitations of place and head-direction
cells.

@)

(b)

Figure 4. (a) An overhead view of the robot (large circle) at two moments in time where it has
associated a cluster of active place cells (grey shading represents location encoded by cells) and
head-direction cells (long solid arrow represents direction encoded by cells) of the robot with an
identical view of two cylinders. (b) At a later time the robot encounters the same two cylinders as
in (a) and activates place and head-direction cells supporting the two possible robot locations and
two possible robot orientations. The representational problem is revealed when the robot continues
to move and tries to update its location estimates. Each location estimate has two orientations
associated with it, one correct one shown by the long solid arrow, and one ‘incorrect’ one shown

by the dotted arrow (Milford, 2003).
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Pose Cells

The pose cells in RatSLAM are a type of
cell that combines the characteristics of place
and head-direction cells, in that an individual
cell represents a particular robot location and
orientation. They are formed from the same
type of competitive attractor networks used to
form the place and head-direction cells, but
with the cells arranged in a three-dimensional
structure. Each axis of the structure corre-
sponds to a different state variable, 2/,3’ and
0’ (Figure 5). For this cell structure primed
co-ordinate variables were used to represent
the degeneration in correspondence between co-
ordinates in the cell structure and co-ordinates
in physical space. For example, in indoor exper-
iments, each pose cell initially fires maximally
when the robot is in a 0.25 x 0.25m area and
orientated within a 10 degree band. However as
an experiment progresses, the pose volume each
pose cell corresponds to can grow, shrink, warp,
or even disappear under the influence of visual
information. Like the previous networks, cells
are highly interconnected by both excitatory
and inhibitory connections, and connectivity
wraps around in all three-dimensions to the
opposing faces of the structure. The stable

Pose Cells
(PC)

6/

state of the network in the absence of any input
is a cluster of active cells or ‘activity packet’,
representing a single estimate of the robot’s
pose in the environment.

Each cell has an activation range between
0 and 1, with the activity level qualitatively
encoding the probability of the robot having
the specific pose (location and orientation) as-
sociated with that cell. At any one time many
cells can have non-zero activations, meaning
that the activation level of any individual cell is
relatively meaningless. However, by viewing the
activity of the network as a whole, it is possible
to extract the network’s estimate of the robot’s
most likely pose. Figure 6 shows a snapshot
of cell activity in the pose cell matrix during
an experiment. The largest and most strongly
activated cluster of cells represents the robot’s
most likely pose. However, other clusters of
active cells represent alternative possible robot
locations and orientations. These alternative
possibilities are due to perceptual ambiguities in
the robot’s environment. As the robot continues
to move, one of these other clusters of active
cells can become dominant if the robot’s percep-
tual input supports the location and orientation
associated with those cells.

Activity Packet

Figure 5. The three-dimensional pose cell model. Each dimension corresponds to one of the
three state variables of a ground-based robot (Milford, 2003).
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Figure 6. Snapshot of pose cell activity during an experiment. Several activity packets of varying
size are evolving under the influence of the competitive attractor dynamics (Milford, 2004).

Figure 7. Floor plan of loop environment. The shaded area and arrows indicate the path of the
robot. Floorplan kindly provided by the CSIRO.

Experimental Setu
P S P because the robot navigation system must be

One of the test environments for the pose able to recognise that it is back where it started
cells was a 70 metre long corridor loop at the after completing a loop of the environment. The
Queensland Centre for Advanced Technologies robot’s control scheme used the sonar array to
(Figure 7). Loop environments are typical test-  perform autonomous wall following. SLAM was
ing environments in robotic navigation research,  performed live during the actual test.
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Closing the Loop

Figure 8a shows the trajectory of the robot
calculated using only path integration. Small
errors in the sensory input from the wheel
encoders as well as wheel slip have accumulated
over time and produced the characteristic drift
in the robot’s estimate of its own position.
When the RatSLAM system was used the tra-
jectory of the robot, as represented by the path
of the dominant cluster of active cells through
the pose cells, was consistent over repeated laps,
as shown in Figure 8b. The figure shows the
path of the most highly active pose cells over
time, that encode the robot’s representation of
its location and orientation in the environment.
At the start of each new lap the robot was able
to repeatedly close the loop, with dashed lines
showing the robot correcting its estimate of its
location. At other stages of the experiment the
system was able to recover from path integra-
tion errors.

Navigation: Goal Memory

With the model able to create a stable repre-
sentation of its environment, the next challenge
was to use the map to perform navigation tasks.
The task of adding a goal recall capability
to the RatSLAM system was undertaken in
a pragmatic way as with the development of
the core mapping method. Some biological
navigation concepts were considered, such as
the idea of activity encoding the desired future
location of the robot. However there was little
attempt to model the actual firing properties
of biological place cells during task behaviour,
with more emphasis given to the computability
of the algorithms.

The navigation system that was developed is
known as the goal memory component of Rat-
SLAM. The goal memory system uses a copy of
the pose cell structure, but adds temporal link
information between cells as the robot explores
the environment. In effect, the goal memory
system learns the temporal gradient between
places in the environment. To calculate a path
from the robot’s current location to a goal
location, the system integrates the temporal
gradient, starting at the goal location. The
integral builds quickly along long or difficult

paths, and slowly on more direct paths that
the robot can navigate effectively. The result
is a temporal map, essentially coding how long
it takes to get from any location to the goal
location. To navigate to the goal, the robot
picks the direction of movement within the
temporal map which moves it to a location
closer in time to the goal. Because the integral
operation starts at the goal location, the robot
is guaranteed to only ever have one possible
(and optimal) direction of movement.

The goal memory system was tested initially
in part of an indoor office environment, shown
in Figure 9a. Figure 9b shows the temporal map
for a typical goal navigation task from A to 1 on
the map. Darker areas correspond to lower goal
memory cell activity levels and hence locations
close in time to the goal. The robot was able to
follow the temporal gradient to reach the goal,
as shown in Figure 9c.

Increasing Environment Size:
Navigation Problems

The initial goal memory experiments, while
successful, were conducted in a small envi-
ronment. Omne consequence of this was that
the layout of the representation in the pose
cells and goal memory cells (Figure 9b) was
quite similar to the actual environment layout
(Figure 9a). A second set of experiments was
conducted using most of the building floor area
shown in Figure 10a. This larger, more complex
environment led to longer experiment durations,
since the robot had a lot more ground to cover
and more route possibilities.  Wrapping in
the pose cell structure became a consideration,
since the nominal area encoded by the pose
cells was smaller than the physical area of
the environment. While the number of pose
cells could be increased to avoid this problem,
rodents are known to navigate large complex
environments with a limited number of spatial
cells. To test the overall system functionality
with pose cell wrapping, a small 40 x 20 X
36 pose cell matrix was used with a nominal
no-wrap area representation of 10 x 5m (each
cell is nominally 0.25m x 0.25m). This is much
smaller than the actual 28 x 13 m environment
area.
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Figure 8. (a) Trajectory of the robot calculated using only path integration. (b) Robot trajectory
calculated by the RatSLAM system. RatSLAM closed the loop upon starting the second and
subsequent laps, and also recovered from path integration errors at other points. Dashed lines
indicate the start and finish of re-localising corrections. Each grid square represents 4 x 4 pose
cells in the (2/,y’) plane of the model shown in Figure 5 (Milford, 2004).
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Figure 9. (a) Floor plan and robot trajectory for initial goal navigation experiments. The
numerical labels indicate the two goal locations. (b) The temporal map cells after recall of the
first goal. Darker areas correspond to lower cell activity levels and hence locations close in time to
the goal. (¢) The path the robot followed to reach the first goal. Each grid square represents 4 x
4 pose cells in the (z/,y") plane (Milford, 2005). ©2005 IEEE.
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Figure 10. (a) Floor plan of large indoor environment. The robot’s path is shown by the thick
line. (b) Dominant packet path for a 40 x 20 x 36 pose cell matrix. The path is projected onto
the (2/,y’) plane. Each grid square represents 4 x 4 pose cells in the (2’,y’) plane. ‘Start’ and
‘End’ mark the initial and final location of the dominant activity packet. (c¢) Temporal map for
the large indoor environment (Milford, 2006). ©2006 IEEE.
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Figure 10b shows the trajectory of the dom-
inant activity packet through the (2/,y") plane
of the pose cells. As can be seen in the figure,
the pose cell trajectory looks very different to
the robot’s actual trajectory through the envi-
ronment. This is in part due to the wrapping
connectivity of the pose cell structure — many
times the dominant activity packet would wrap
off one ‘edge’ of the pose cell matrix and re-
appear on the opposite edge. The size of
the environment is also a factor — the robot
travelled longer distances before returning to
a familiar place, and consequently errors due
to odometric drift were larger. The correction
of these errors is shown by the dashed lines
in Figure 10b — these represent times when
the dominant activity packet in the pose cells
switched to a different cluster of pose cells.
These correction events were driven by the
robot’s vision system supporting cells encoding
a different robot location to that supported
by the then dominant activity packet. With
enough visual support, the activation levels of
these other cells increased until they became the
dominant cluster of active cells in the network.

Figure 10c shows the temporal map created
for this environment by the goal memory sys-
tem, for a goal located at the ‘Start’ location
in Figure 10a. The temporal map is created
using the goal memory cells, which themselves
are a copy of the pose cells but with added
temporal information. Consequently, the goal
memory cells inherit the discontinuities of the
pose cell representation. In addition, because
the environment was larger than could be rep-
resented within ‘one pass’ of the pose cells,
some pose cells represent multiple places in
the environment due to the network’s wrapping
connectivity. All this means that the layout of
the cells within the pose cell structure can no
longer be interpreted as a strict representation
of the spatial layout of the physical environ-
ment. Consequently, the goal memory system,
which is dependent on the layout of the goal
memory cells, produces a nonsensical temporal
map. Not surprisingly, robot navigation failed
completely in this experiment, with the robot
repeatedly trying to drive through a wall, with
its local obstacle avoidance routine overriding it

whenever it got too close.

Analysis of the goal memory system revealed
that it had failed because it implicitly interprets
the structural arrangement of the pose (and
goal memory) cells as corresponding to the
physical arrangement of the places associated
with them. These experiments showed that
in large environments the pose cell structure
loses spatial relevance, through a number of
phenomena related to wrapping of the pose
cells and visual re-localisation. Instead the
pose cells develop a characteristic shared by
biological place cells in the rodent hippocam-
pus — the arrangement of the cells bears no
correspondence to the spatial structure of the
environment. This characteristic means it is not
possible to directly extract spatial information
from the pose cell structure for tasks such as
navigating to goals. To address this limitation,
the experience mapping algorithm was devel-
oped, in order to maintain the inter-cell spatial
information of the pose cells while retaining the
topological correctness of the pose cell maps.

Experience Mapping

The experience mapping algorithm uses the
output from the pose cells and local view cells to
create an experience map. An experience map
is a graph-like map containing nodes, known
as experiences, and transitions or links between
these experiences. Each experience represents
a snapshot of the activity within the pose cells
and local view cells at a certain time. In effect
an experience is the robot’s final representation
of a distinct place in the environment, along
with information about what that place looks
like and other behavioural and temporal infor-
mation. When the set of existing experiences
is insufficient for describing the pose and local
view cells’ activity state, a new experience is
created. Figure 11 shows an experience and
how it is associated with certain pose and local
view cells; ',y and 6’ describe the location of
the cells within the pose cell matrix associated
with the experience, and V describes the local
view cell associated with the experience. Each
experience also has its own (z,y, 0’) state, which
describes its location within the co-ordinate
space of the experience map. This co-ordinate
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space is completely separated from the pose and
local view cell co-ordinate spaces, and through
a process of map correction becomes much
more representative of the spatial layout of the
environment.

While experiences represent distinct places
in the environment, experience transitions store
information about the physical movement of the
robot between one experience and another, as
well as information about the robot’s behaviour
during the transition and the time taken to
complete the transition. The spatial informa-
tion stored in the transition links is crucial to
the process of map correction, which keeps the
experience map layout spatially representative
of the environment.

When the robot returns to a familiar part
of the environment after spending time in an
unexplored part of the environment, its estimate
of where it is, as encoded in the pose cells, may
be incorrect, due to the build up of small errors
over time (odometric drift). In such a situation,
familiar visual scenes will activate pose cells
representing the correct location of the robot.
This in turn causes the robot’s associated loca-
tion within the experience map (given by the
maximally active experience) to jump from the

new experience it has most recently learned to
a previously learnt experience. This will cause
a momentary discontinuity in the spatial layout
of the experience map. The transition between
the two experiences will encode only a relatively
short distance of robot travel, but the actual
positions of the two experiences in the (x,y)
space of the experience map will be relatively
far apart. The map correction process creates a
spatially consistent map by shifting experiences
so that the difference between the distance
separating any pair of linked experiences in the
experience map space, and the distance encoded
by the transition link itself, is minimized.

To perform goal navigation, the experience
maps are converted into temporal maps in a
process similar to that used to convert the
goal memory cells into temporal maps. The
experience maps are also used by exploration
algorithms that enable a robot to rapidly ex-
plore a mnovel environment, and adaptation
mechanisms which enable a robot to modify
its map to reflect changes in the environment
— due to space restrictions, these sections of
work are merely mentioned here, with further
information available elsewhere.

Figure 11. Experience map co-ordinate space. An experience is associated with certain pose and
local view cells, but exists within the experience map’s own (z,y,6’) co-ordinate space (Milford,

2006).
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Experience Maps and Navigation

The new navigation system was tested in the
environment shown in Figure 10a. Figure 12
shows the pose cell representation of the en-
vironment, and the resultant experience map.
The experience mapping algorithm is able to
successfully remove the discontinuities in the
pose cell map, as well as draw multiple repre-
sentations of the same place into overlapping
areas of the map. This is due to the ability of
the experience mapping algorithm to correct its
layout based on connectivity information, unlike
the pose cell representations which are rigidly
linked to the static pose cell matrix structure
(Milford, Wyeth and Prasser, 2006).

Figure 13 shows the planned and executed
routes for six typical goal navigation tasks in
the environment. The temporal maps shown
in Figures 13 a,c,e,g,i,k, which were now built
using the experience map, clearly represent the
actual layout of the physical environment. The
robot followed the planned route to the goal for
goals one and two. The robot followed routes
that were quite similar to the planned routes
for goals four and five, but with some minor
variations. For the routes to goal three and
six the robot deviated very significantly from
the initial planned routes to the goal, but did
eventually reach and stop at the goal.

From observing these and other experiments
it was clear that most of the mistakes made
by the route following algorithm resulted from
using the incorrect local movement behaviour
at critical intersections. Once the robot took a
wrong turn it was also clear that the route plan-
ning algorithm immediately started to plan new
‘shortest’ routes to the goal. After mistakenly
turning into the room containing goal two while
navigating to goal six, the robot attempted to
exit back into the corridor, as shown by the loop
at the entrance to the room. It was not able to
time its switching of local movement behaviours
correctly and ended up doing a complete loop
of the room.

Although developed as a heuristic solution
to a navigation problem, the experience map-

ping algorithm bears a functional resemblance
to the place cells originally modelled at the
start of the project. Specifically, place cells
are currently thought to encode contextual spa-
tial memories, rather than spatial memories in
isolation (Hafting, Fyhn, Molden, Moser and
Moser, 2005). Each experience in the experience
map represents a distinct spatial location in the
environment through its association with the
pose cells, but also stores the visual appear-
ance of that place through its association with
the local view cells. Furthermore, transitions
between experiences encode behavioural and
temporal information about the robot’s move-
ment through the environment, providing some
parallels to the contextual spatial memories
thought to be stored in place cells.

By the end of the project, the RatSLAM
system had been developed to the stage where
a robot could use it to explore an unknown
environment, create a map of that environment,
use that map to navigate between places, and
adapt to simple changes in the environment
(Milford, 2008). In the course of the work
several modifications of the original models were
made to overcome functional navigation limi-
tations. One major problem was the splitting
of the representation of the robot’s state into
location and orientation in the place and head-
direction cells, which was solved by developing
pose cells combining both their characteristics.
Another major problem was encountered when
attempting to perform purposeful navigation
using the spatial representations built up in the
pose cells. While the cells learned stable repre-
sentations, they lacked easily accessible spatial
information required to plan and execute routes
to goals. The experience mapping algorithm
was developed to take the output from the pose
cells and turn it into a spatially representative
map that could be used for goal navigation
and other tasks. In recent work, we have
demonstrated that the mapping system can
scale to mapping entire suburbs (Milford and
Wyeth, 2008), and current work is investigating
the scalability in time in experiments running
over several days or weeks.
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Figure 12. (a) Path of the most highly active pose cells through the 100 x 40 x 36 pose cell
matrix. The path is projected onto the (2/,y’) plane. Each grid square represents 4 x 4 pose cells
in the (2’,y’) plane. (b) Resultant experience map, with all discontinuities removed and multiple
representations drawn into overlapping areas of the map (Milford, 2006). ©2006 IEEE.
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Figure 13. Temporal maps, planned and actual routes using the experience mapping algorithm
for goals one to six (in order). Temporal maps and planned routes, with the temporal distance
measured in seconds (a, ¢, e, g, i, k). Actual routes executed by the robot (b, d, f, h, j, 1). Four
of the executed routes were close to optimal or somewhat suboptimal (b, d, h, j). Two routes
involved major movement errors (f, 1). Overlapping experiences were rendered in order of their
temporal value, with lower value layers rendered above higher value layers. Figure from (Milford,
2008) with permission.
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The work carried out for this project raised
a number of issues of interest. The RatSLAM
model and experience mapping algorithm were
evaluated through practical experimentation.
Other computational models such as those of
Arleo (2000) or Stringer et al. (2002) were eval-
uated in terms of their practical performance
and their replication of biological observations.
A set of theoretical analysis tools is required
to complement the practical analysis of these
systems. Being able to theoretically prove
(or disprove) properties of these biologically
inspired models like convergence and long-term
stability, such as in the work by Cheung et al.
(Cheung, Zhang, Stricker and Srinivasan, 2007),
would facilitate their further development as
practical robot mapping and navigation sys-
tems.

The work also touched on the issue of
map usability — a map that looks good is of
course useless if it cannot be used by the agent
that created it, whether human, animal, or
robot. Traditional robotic mapping represen-
tations such as high resolution grid maps are
not necessarily optimal for integrated mapping
and navigation systems.  Animals navigate
quite well without apparently forming any high
resolution occupancy grid map. Future work
on both probabilistic and biologically inspired
mapping and navigation systems will benefit
from a detailed study of the properties of a map
that make it usable, and a start on this has been
made in (Milford and Wyeth, 2007).

CONCLUSION

In conclusion, the aim of this work was to
demonstrate the potential for using biology as
the inspiration for robotic mapping and nav-
igation systems. In a relatively short period
of time it was possible to develop, using the
rodent brain as inspiration, a robotic control
system that allowed a robot to explore, map,
and navigate an unknown environment, and
even adapt to very simple changes (Milford,
2008). The work on any particular stage of the
project was necessarily relatively brief, but it
is hoped that it will help spur further work in
this area. Recent new discoveries about how

rats use their brains to map their environments,
such as grid cells, are providing researchers in
this area with rich new sources of inspiration
(Solstad, Moser and Einevoll, 2006, Guanella
and Verschure, 2006, Rolls, Stringer and Elliot,
2006, Burgess, Barry and O’Keefe, 2007). I
hope and anticipate that we shall soon see
robots equipped with artificial models of animal
brains, adeptly navigating in our everyday lives
using animal navigation systems derived from
millions of years of evolution.
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