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It is now well known that the answer to the ultimate question of life, the universe and everything 
is 42. [1.] So we see that numbers are the fundamental elements of civilisation as we know it. 
Numbers such as telephone numbers and car licenses serve to whip our activities into some sort 
of order. Numbers are turned to good account by the Gas Board and the Taxation Office. 
Numbers, especially big round ones, fuel the arguments of economists and politicians. Numbers 
have mystical properties: 7 is a nice friendly number, while 13 is an unlucky one, particularly on 
Fridays. Although we would not rationally except to get anything significant by adding Margaret 
Thatcher’s telephone number to Bob Hawke’s this is still a very popular method of prophecy. 
For example, in the prophecy of Isaiah, the lion proclaims the fall of Babylon because the 
numerical equivalents of the Hebrew words for “lion” and “Babylon” have the same sum. [2.] 
Numbers are ubiquitous. All this was much more pithily expressed by Leopold Kronecker in 
1880: “God created the integers – all else is the work of man”. 

Mathematics is the numbers game par excellence. This is not to say that mathematicians are 
better than anybody else at reconciling their bank statements. In fact, Isaac Newton, who was 
Master of the Mint, employed a book-keeper to do his sums. Rather, mathematicians are the 
keepers of the odd numbers and the even numbers [3], the square numbers and perfect numbers, 
the complex numbers and the irrational numbers. So there has grown up the study of the theory 
of numbers. Ever since Pythagoras, mathematicians have been intrigued, delighted and frustrated 
by the wonderful world of numbers. To Pythagoras, numbers were the absolute and ultimate 
foundation of nature, the source of music and, through the music of the spheres, the explanation 
for the motion of the planets. [4] Some of the most inspired work of such great mathematicians 
as Euler, Laqrange. Gauss. Dirichlet and their successors has dealt with the theory of numbers. 
However, in these more rational times. such elegant pursuits have seemed to some to be merely 
dilletantism. Fourier was one such critic. Jacobi, in 1840, complained that “Fourier had the 
opinion that the principal object of mathematics was public use and the explanation of natural 
phenomena, but a philosopher like him ought to know that the sole object of the science is the 
honour of the human spirit and that under this view a problem of the theory of numbers is 
worth as much as a problem on the system of the world”. 

The most intriguing, delightful and frustratinq of all numbers are the prime numbers. Prime 
numbers are numbers which cannot be factorised as a product of smaller numbers.[5] Thus the 
first few prime numbers are 
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2, 3, 5. 7, 11, 13. 17, 19, 23, 29, 31, 37. 41, 43, 47, 53, 59, 61, ... 

The prime numbers are the atoms of arithmetic because, as the ancient Greeks knew, every 
number can be factorised uniquely as a product of prime numbers. For example 

666 = (2 x 333 = 2 x 3 x 111 =) 2 x 3 x 3 x 37. 

There are infinitely many primes. This also was discovered by the Greeks and the argument is 
simple, elegant and compelling. Let 2, 3, 5, ... P be a list of all the primes up to some particular 
prime P. Consider the number 

N = 2 x 3 x 5 x ... x P + 1. 

This number is not divisible by 2: in fact, we are left with a remainder of 1 after dividing by 2. In 
the same way, N is not divisible by 3, or by 5. or by any of the primes up to P. However. N is 
divisible by some prime which might be N itself if N is prime. This prime is different from any 
of the primes 2, 3, 5, ... P, and so is greater than P. Consequently, the series of primes never 
comes to an end. Of course, only a finite number of primes have ever been seen, but some of 
them are pretty big. These big primes are all Mersenne primes, that is primes which are 1 less 
then a power of 2 [6]. It so happens that there is a very efficient method of testing whether 2n –
 1 is prime, the amount of calculation being proportional to n3. The known Mersenne primes are 
listed in Table 1 with their discoverers and computation times. They serve to underline the 
spectacular growth in computing power in recent years. Lehmer’s primes were found on the first 
generation of electronic computers. while Slowinski’s monsters have been found on the Cray 
supercomputer. Since n has increased by a factor of about 400 in this time, the amount of 
calculation has increased by a factor of about 4003 = 64 x 106, so we might conclude that today’s 
computers are about a million times faster than the early machines. 

Table 1. Mersenne Primes 

Value of n for which 
2n-1 is prime 

When proved 
to be prime 

Discoverer 
Computation 
time 

2, 3, 5, 7 antiquity mentioned by Euclid 
 

13 1461 in codex Lat. Monac. 14908 
 

17, 19 1588 Pietro Antonio Cataldi 
 

31 1772 Euler 
 

61, 89, 107, 127 1876 Lucas 
 

521, 607, 1279, 2203, 2281 1952 Lehmer, Robinson 1 min–1 hr 

3217 1957 Riesel 5½ hrs 

4253, 4423 1961 Hurwitz 50 min 

9689, 9941, 11213 1963 Gillies 2 hrs 

19937 1971 Tuckerman 35 min 

21701, 23209 1978 Noll, Nickel 8 hrs 

44497 1979 Slowinski, Nelson 8 min 

86243 1983 Slowinski 
 

132049 1984 Slowinski 
 



216091 1985 Slowinski 
 

Table 2. Values of π(x) 

x π(x) π(x)/x/log x 

10 4 0.92 

100 25 1.15 

1 000 168 1.15 

10 000 1 229 1.14 

100 000 9 952 1.11 

1 000 000 78 498 1.09 

10 000 000 664 579 1.08 

100 000 000 5 761 455 1.06 

1 000 000 000 50 847 534 1.05 

10 000 000 000 455 052 512 1.04 

To our present knowledge, the detailed behaviour of the prime numbers is unpredictable. There 
is no useful formula for calculating the n-th prime. This is part of the fascination of the search 
for bigger and bigger primes. In fact, we have no certain knowledge about where the next 
Mersenne prime will appear or even if there are any more of them at all. There is more suspense 
in the prime numbers than in the whole of the “HitchHikers Guide to the Galaxy”.[l] 

On the other hand. the distribution of the primes exhibits stunning regularity. This can be seen 
in the behaviour of the function R(x) which counts the number of primes up to x. As Table 2 
reveals, π(x) is approximately x/log x. To put it another way, the probability that a randomly 
chosen number n is prime is about l/log n. This is the famous prime number theorem. It was 
discovered experimentally around 1800 by Gauss and Legendre and eventually proved in 1896 by 
Hadamard and de la Val1ée Poussin with the aid of new and powerful analytic methods. 
However. x/log x is only a reasonably good approximation to π(x) and it is natural to ask for a 
better one. This question was explored by Riemann in 1860 and he saw that the prime numbers 
are intimately connected with a function now called the Riemann zeta function. Riemann 
obtained what is essentially an exact formula for n(x) in terms of the zeros of his zeta function. It 
is therefore crucial to know where the zeros of the zeta function are. This is what the infamous 
Riemann Hypothesis does.[7] The Riemann Hypothesis is supported by an impressive amount of 
experimental evidence. For example, if we make a list of the zeros of the zeta function, we find 
that the first 200 million zeros or so are exactly where Riemann predicted However, there are 
infinitely many zeros and every one of them is important, so the ultimate answer to the question 
of the distribution of the prime numbers is still a long way off. The story continues: the latest 
attempts to settle the Riemann Hypothesis uncovered connections between prime numbers and 
quantum electrodynamics. 

What then are we to make of this theory of numbers? It seems to be a very private science and 
there are those who will ask why the serious study of these matters is really worth-while. I have 
tried to illustrate how the theory of numbers captures the essence of mathematics: beauty, 
inevitability, unexpectedness and depth. Here the interplay of ideas is at its most dazzling. For 
this reason, the work of the great men of this subject is permanent. For example, Riemann wrote 
only one paper on the theory of numbers and the Riemann Hypothesis is not much more than a 
throwaway line, but it will always be the Riemann Hypothesis even after it is settled. There is a 
further twist to this argument. The theory of numbers is harmless. The point is beautifully made 



in “A mathematician’s apology” by G.H. Hardy.[8] “A good deal of elementary mathematics, 
which includes, for example, a fair working knowledge of the differential and integral calculus, 
has considerable practical utility. These parts of mathematics are, on the whole, rather dull: they 
are just the parts which have the least aesthetic value. The real mathematics of the real 
mathematicians, the mathematics of Fermat and Euler and Gauss and Abel and Riemann, is 
almost wholly useless. Mathematicians may be justified in rejoicing that there is one science at 
any rate, and that their own, whose very remoteness from ordinary human activities should keep 
it gentle and clean. It is the dull and elementary parts of mathematics that work for good or ill. 
Real mathematics has no effects on war, No one has yet discovered any warlike purpose to be 
served by the theory of numbers or relativity and it seems very unlikely that anyone will do so for 
many years”. Despite its contradictions, it seems to me that this sums up the motives of real 
mathematicians. But the world is a funny place and, sooner or later, much real mathematics finds 
a public use. 

In recent times, the hazards of space travel and electronic banking have spawned exciting 
developments in secret codes. Much of this involves the theory of numbers. The work is so 
important that the Defence Establishment in the United States made strenuous efforts to have 
the study of prime numbers classified. One species of code is the error-correcting code. Signals 
from the depths of space, say, are transmitted as strings of zeros and ones. When a 0 is sent, 
usually a 0 is received, but occasionally, because of noise, a 1 is received instead. A 1 is usually 
received as a 1, but occasionally as a 0. We could guard against these occasional errors by sending 
each symbol several times, but this is very inefficient. Space satellites and compact disc players 
use subtle error-correcting codes which rely on ideas from algebraic number theory and 
geometry. Another species of code is the public-key code which makes it possible to send signed 
electronic mail. This is what I will try to describe next.[9] 

 

Figure 1. Conventional cryptography 

Conventional cryptography makes use of a secret key known to the sender and the receiver. but 
not to the “bad guy”. (See Figure l.) 

 

Figure 2. Public-key cryptography 



This is the stuff of trench warfare and spy stories. The main problem is to exchange a sufficient 
amount of key between sender and receiver and to keep it secret, because once the key is 
compromised at either end the “bad guy” can read the message. Public-key cryptography, by 
contrast, looks like this. (See Figure 2.) 

The code requires two different keys, one for encrypting and one for decrypting and depends on 
the fact that knowledge of the encrypting key is no help in decrypting. The mechanism is a 
trapdoor function. This is a function E for encryption  

message X  E⇒  cipher EW 

which has an inverse D for decryption 

cipher E(X)  D⇒  message D(E(X)) = X. 

with the essential property that the inverse D cannot be discovered by studying E. So E is a 
trapdoor through which messages vanish and they can only be recovered by a different route 
with the aid of the special key D. If we have a supply of one-way functions, we can set up a 
cryto-net. Suppose a group of people wish to talk to each other privately. Each person i chooses 
a trapdoor function Ei with an inverse Di. The functions E1, E2 ... are listed in a public directory, 
while each person keeps his inverse function Di secret. When i wants to send a message X to j, 
he encrypts the message X as 

Y = Ej(Di(X)) 

and sends it to j. Now j can recover the message by calculating 

Ei(Dj(Y)) = Ei(Dj(Ej(Di(X)))) = Ei(Di(X)) = X. 

Only j can read the message because only j knows Dj. This ensures privacy. Moreover. only i 
could have sent the message because only i knows Di, so the scheme provides authentication as 
well.[10] 

Do these marvellous trap-door functions exist? They are, of course, logically impossible and it 
will therefore take a little time to construct one. The first ingredient is the modular arithmetic 
invented by Gauss around 1800. If a number n when divided by the modulus m leaves the 
remainder r. we say n is congruent to r modulo m and write n ≡ r(mod m). This means that m 
divides n - r exactly with no remainder. For example, 37 ≡ 1 (mod 9) because 37 = 4 x 9 + 1: 37 
≡ 4 (mod 11) because 37 = 3 x 11 + 4. The notation is meant to suggest that arithmetic works 
with these remainders according to the usual rules. For example. 

37 x 41 = 1517 

can be written as (3 x 11 + 4) x (3 - 11 + 8) = (137 x 11 + 10) and on taking remainders modulo 
11 this yields the correct equation 

4 x 8 ≡ 10 (mod 11). 

Arithmetic modulo 9 makes a useful check on computation. For example, 

123456789 x 987654321 ≠ 121932631212635269 



because the left side is 0 x 0 (mod 9) and the right side is 1 (mod 9) as you may easily cheek.[ll] 

The second ingredient is Fermat’s little theorem.[12] Fermat discovered in 1640 that if p is a 
prime and b is any integer not divisible by p, then 

bp-1 ≡ 1 (mod p). 

that is bp-1 is exactly divisible by p. For example, 26 -1 = 63 is indeed divisible by 7, that is 26 ≡ 1 
(mod 7). On the other hand, 2322 ≡ 123 (mod 323) and we see that 323 cannot be a prime. This is 
the prototype for the fast methods of testing for primality. The proof of Fermat’s little theorem 
is another gem of the theory of numbers. Observe that the possible remainders modulo p are 
0,1,2, ..., p - 1. The numbers b, 2b, 3b, ... (p - 1)b have distinct non-zero remainders modulo p, 
so these remainders must be 1,2, .... p - 1 in some mixed up order. If we multiply these two sets 
of numbers together, we must get the same result modulo p, that is 

b.2b.3b....(p - 1)b ≡ 1.2.3.... (p - 1) (mod p). 

Cancelling 1.2,3. ... (p - 1) on both sides gives bp-1 ≡ 1 (mod p). Actually, we need a little more. If 
p and q are distinct primes and b is any integer not divisible by either prime, then 

b(p-1)(q-1) ≡ 1 (mod pq). 

For example, 323 = 17 x 19, 288 = 16 x 18 and 2288 ≡ 1 (mod 323). This extension follows from 
Fermat’s little theorem because 

b(p-1)(q-1) ≡ 1(q-1) = 1 (mod p). 

i.e. p divides b(p-1)(q-1) - 1, and  

b(p-1)(q-1) ≡ 1(p-1) = 1 (mod q), 

i,e. q divides b(p-l)(q-1) - 1, 

whence pq divides b(p-1)(q-1) - 1 as required. 

Here is the trapdoor function devised by Rivest, Shamir and Adleman in 1978. Choose two large 
secret prime numbers p and q about 50 digits long. Their product r = pq is the encypting 
modulus. Also choose the encrypting exponent S, making sure that s has no common factor with 
either p - 1 or q - 1. The numbers r and s define the public key and go in the telephone book of 
encrypting functions. Before encryption, a written message is converted into a string of digits, 
say by A = 01, B = 02, C = 03, .... . We break the resulting string into blocks of 100 digits. Each 
block X is then encrypted by the function 

E(X) ≡ Xs (mod r). 

To decrypt, find the decrypting exponent t by solving the congruence st ≡ 1 (mod(p - 1)(q - )) 
and then use the decrypting function D given by 

D(Y) a yt (mod r). 

This works because st = 1 + k(p - )(q - 1) and so 



D(E(X)) ≡ E(X)t ≡ Xst = Xl+k(p-l)(q-1)  

= X.(X(p-1)(q-1)k .≡ X(mod r). 

(The last step depends on X(p-Mq-1) ≡ 1 (mod pq).) For a simple and therefore utterly useless 
example, take r = 187 = 11 x 17 and s = 7. The message X = 003 is encrypted as 

Y ≡ Xs = 37 = 2187 ≡ 3 (mod 187). 

The decrypting exponent comes from solving 7t ≡ 1 (mod 160) which gives t = 23. So we can 
decrypt Y = 130 by calculating 

yt = 13023 ≡ 3 (mod 187). 

Despite initial appearances, all these calculations are very easy on a computer. The point to 
notice is that this really is a trapdoor because the decrypting exponent cannot be calculated from 
the public information r and a. We must factorise r = pq first before we can calculate t.[13] But r 
is a 100 digit number and it appears to be essentially impossible to factorise such large numbers. 
The strength of the scheme depends on the fact that it is easy to find large primes but it is very 
difficult at the moment to factorise large numbers. However, there is no guarantee that some one 
will not invent a revolutionary method of factorising tomorrow and unhinge this trapdoor in the 
process. There is now more incentive for trying to understand the mysteries of the primes than 
ever. 

I have tried to defend my science by appealing to public use and base motives. I have also tried 
to illustrate the private face, the incorruptible beauty and fascination of the subject. I have 
neither the time nor the knowledge to explain how the ideas of the theory of numbers permeate 
the whole of science. Consider this Platonic dialogue [14]: 

Corbeiller: “In the last 60 years, however, a new revolution has taken place, and 
everywhere we look we find that what seems to be continuous is really composed 
of atoms.” 
Empeiros, “But are not modern mathematicians interested in such things?” 
Corbeiller: “They are, but they give them other names. They call them Number 
Theory and the Theory of Discontinuous Groups. Actually, they have found 
much more then we can use yet in physics, but we have in crystals illustrations of 
some of their simpler theorems”. 

Again, here is the great Russian mathematician Yu. I. Manin [15]: 

“It is remarkable that the deepest ideas of number theory reveal a far-reaching 
resemblance to the ideas of modern theoretical physics. Like quantum mechanics, 
the theory of numbers furnishes completely non-obvious patterns of relationship 
between the continuous and the discrete (the technique of Dirichlet series and 
trigonometric sums, p-adic numbers, nonarchimedean analysis) and emphasizes 
the role of hidden symmetries (classfield theory. which describes the relationship 
between prime numbers and the Galois groups of algebraic number fields). One 
would like to hope that this resemblance is no accident. and that we are already 
learning new words about the World in which we live, but we do not yet 
understand their meaning”. 



Numbers, then, are the key to knowledge. The last word, as is only proper, belongs to Winston 
Churchill, who saw the great importance of this subject and how he might have been a really 
great man but for one sma11 thing: 

“I had a feeling once about Mathematics – that I saw it all. Depth beyond depth 
was revealed to me – Byss and the Abyss. I saw – as one might see the transit of 
Venus or even the Lord Mayor’s Show – a quantity passing infinity and changinq 
its sign from plus to minus. I saw exactly why it happened and why the 
tergiversation was inevitable – but it was after dinner and I let it go”.[16] 

Notes 

1. D. Adams, “The Hitch-Hikers Guide to the Galaxy”. (Pan, 1979). The apotheosis of 
Deep Thought is revealed in chapter 27.  

2. Isaiah 21 : 8, 9.  
3. No mathematician could have been so crass as the Minister in the New South Wales 

Government who declared during a petrol strike that, for the purposes of petrol 
rationing, car number plates ending in 0 were to be considered even.  

4. For a modern opinion, see D. Adams, “Life, the universe and everything” (Pan, 1982, 
chapter 7). “It is now realised that numbers are not absolute, but depend on the 
observer’s movement in restaurants”.  

5. By convention and convenience, 1 is not a prime. So the Prime Minister, despite his ego, 
is not prime. Neither, in most cases. are prime ribs of beef.  

6. They are named after Marin Mersenne who corresponded with mathematicians of the 
day, provoking them with his execrable hand-writing and conjectures in number theory. 
In 1644, he gave a list of the Mersenne primes up to 1079 which was only correct up to 
1018, so he is perhaps fortunate to be commemorated in this way.  

7. The Riemann zeta function is defined by the formula 
 
ζ(s) = l-s + 2-s + 3-s + ... 
 
Here s = σ + it is a complex variable. The Riemann Hypothesis asserts that the solutions 
of the equation ζ(σ + it) = 0 all have σ = ½ (except for “trivial” zeros of ζ at -2, -4, -6, 
...).  

8. It is worth noting that this delightful little book was written in 1940 and that its rhetoric 
is the distillation of years of high table conversation in Oxbridge Colleges.  

9. The prehistory of cryptography up to 1967 is described breathlessly in “The 
Codebreakers” by David Kahn (Macmillan. 1967). For later developments, see the article 
by N.J.A. Sloane on “Error-correcting codes and cryptography” in “The mathematical 
Gardner”, edited by D.A. Klarner (Wadsworth, 1981).  

10. Devise a protocol by which two potentially dishonest players can play a fair game of 
poker without using any cards, for example, over the telephone. See “Mental Poker” by 
Shamir, Rivest and Adleman in “The Mathematical Gardner” (ibid).  

11. This trick called “casting out nines” is almost obsolete now. Should you have forgotten 
your 987654321 times tables, all you need recall is that 987654321 x 81 = 80000000001. 
so multiply 123456789 by 80000000001 and divide the result by 81 to get 
121932631112635269.  

12. Not to be confused with the infamous Fermat’s last theorem which is neither a theorem 
nor the last thing he did and which there is no space to explain here.  

13. At least, this is the current position. if s is chosen carefully, the only way to crack the 
code is to solve the congruence for the decrypting exponent. It is perfectly possible that 



someone will discover a better method. This is exactly what happened recently to 
another “trapdoor” based on the knapsack problem, None of the modern schemes for 
cryptography have been proved to be secure.  

14. Philippe Le Corbeiller, “Crystals and the future of physics”, Scientific American, January 
1953, 50-56.  

15. Yu. I. Manin, “Mathematics and Physics”, translated by Ann and Neal Koblitz 
(Birkhauser, 1981).  

16. Quoted in “The Mathematical Magpie” by C. Fadiman (Simon and Schuster, 1962, page 
255).  
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