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Abstract
This paper will discuss how we might develop AI systems which, together with our human brain, 
could transform scientific discovery. In order to do this, we need a definition of AI. AI is defined to 
be that field or industry which is at the intersection of data, algorithms, embedded in an application 
for the purpose of assisting decision-making.

1 Expert Survey on Progress in AI found that only 5% of AI experts in 2022 (defined to be authors who publish 
in Neurips or ICML) surveyed stated that AI presented an existential risk.

What is AI?

The problem with Artificial Intelligence 
(AI) is its name. It either conjures up 

pictures of futuristic worlds with killer 
robots empowered by human intelligence, 
or is put forward as the solution to all the 
planet’s problems. Neither claim is true, and 
both are unhelpful, (Brooks, 2023). These 
extreme views are fueled by the media. Reu-
ters on May 30th this year ran the headline:

Top artificial intelligence executives 
including OpenAI CEO Sam Altman on 
Tuesday joined experts and professors in 
raising the “risk of extinction from AI,” 
which they urged policymakers to equate 
at par with risks posed by pandemics and 
nuclear war.

Needless to say these “top artificial 
intelligence executives” are not a random 
sample of AI experts. On the contrary, they 
are a very biased subset, selected precisely 
because they hold a particular point of view: 
one that makes headlines1 But the fact that 
AI is over-hyped does not mean that it is not 
useful, nor does it mean that we should be 
complacent about its misuse.

This paper will discuss how we might 
develop AI systems which, together with 
our human brain, could transform scientific 
discovery. In order to do this, we need a defi-
nition of AI. For the purpose of this paper, AI 
is defined to be that field or industry which 
is at the intersection of data, algorithms, 
embedded in an application for the purpose 
of assisting decision-making. It will also be 
helpful to categorise AI techniques into 
two categories. The first category consists of 
those techniques for which the primary pur-
pose is to make accurate predictions. These 
techniques will be referred to as predictive 
AI. They are primarily data-driven, based 
on neural network architecture, and do not 
distinguish between cause and effect. The 
second category consists of those techniques 
whose primary purpose is to untangle cause 
and effect, by either encoding a model about 
the world, or by embedding experiments 
within the algorithm to infer causation. 
These techniques will be referred to as causal 
AI. We note that the two categories are not 
mutually exclusive: causal AI techniques 
also give predictions and predictive AI 
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techniques often attempt to infer causa-
tion. Both categories play important and 
complementary roles in scientific discovery.

Predictive AI
One of the most advanced types of predic-
tive AI is ChatGPT. ChatGPT belongs to 
a class of algorithms known as Large Lan-
guage Models (LLMs). It uses data in the 
form of written text to select the next word 
in a sentence. When asked to define itself, 
ChatGPT came back with the following:

ChatGPT, is an example of Narrow AI, 
also known as Weak AI or Artificial 
Narrow Intelligence (ANI). It is designed 
for specific natural language processing 
tasks, such as generating human-like 
text responses, answering questions, and 
engaging in text-based conversations. 
ChatGPT, while highly advanced and 
capable of generating coherent and con-
textually relevant text, is limited in that 
it lacks a true understanding of the text 
it generates.

ChatGPT’s acknowledgement that “it 
lacks a true understanding of the text it 
generates” is insightful. As an example of 
this lack of understanding consider the fol-
lowing example from Marcus (2022),

If you ask LLMs to explain “why crushed 
porcelain is good in breast milk,” they may 
tell you that “porcelain can help to bal-
ance the nutritional content of the milk, 
providing the infant with the nutrients 
they need to help grow and develop.”

ChatGPT’s response sounds authorita-
tive and plausible, but is incorrect. The issue 
is that the objective function of LLMs is flu-
ency not accuracy. ChatGPT states that its 
fluency is developed by “relying on patterns 
and information learned from a massive 

amount of text data during its training.“ 
This is done by a Deep Learning (DL) system 
that computes associations between words, 
in the context of a phrase or sentence. LLMs 
are brilliant at predicting within-sample or 
interpolating. The success of LLMs in doing 
this demonstrates that despite the complex-
ity of language, given enough useful data, 
LLMs can predict what word goes next in 
sentence, and to construct entire paragraphs 
which are fluent and plausible text.

Other types of predictive AI include 
image processing techniques, such as Con-
volutional Neural Networks (CNNs) (Lecun 
et al., 1998). Again, impressive as these algo-
rithms are, they make mistakes that a human 
would never make. Most people in AI and 
machine learning (ML) have seen a picture 
similar to that of Figure 1, where adding a 
small amount of noise to an image can fool 
the classifier that a pig is now an airliner. 
Again the reason that these techniques make 
such mistakes is that, unlike humans, they 
have no model of the world built into them 
and have no ability for abstraction and so 
rely entirely on the information on which 
they were trained.

However the remarkable achievements 
made in predictive AI are certainly useful 
in scientific discovery: their ability to 

Figure 1: A predictive AI technique correctly 
classifies the left-hand picture as pig but with a 
small amount of (non-random) noise added, the 
same technique now classifies the right-hand 
picture as an airliner.
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predict text, based on consuming a large 
corpus, can be used to summarise existing 
knowledge, a first step in the process of 
scientific discovery. The predictive ability 
of image processing techniques such as 
CNNs, Generative Adversarial Networks 
(GAN), (Goodfellow et al., 2014) and 
Variational AutoEncoders (VAE), (Kipf and 
Welling, 2016), together with advancements 
in sensor technology and robotics enables 
us to capture and analyse data in locations 
that were previously inaccessible to humans. 
This is enormously important for scientific 
discovery.

Recently it was announced that a machine 
learning algorithm had deciphered the word 

“purple” on a Roman scroll from the city 
of Herculaneum, see Figure 2, carbonised 
following the eruption of Mt Vesusius. 79 
C.E.(The Economist, 2023).2 Yet, although the 
machine learning algorithm was able to cor-
rectly classify the word as “purple,” it has no 
understanding of ancient Greek or English.3

2 First word discovered in unopened herculaneum scroll. https://scrollprize.org/firstlettershttps://scrollprize.org/firstletters. Accessed: 2023-10-31.
3 In early 2024: the Vesuvius Challenge 2023 Grand Prize was awarded: we can read the first scroll! https://https://
scrollprize.org/grandprizescrollprize.org/grandprize [Ed.]

Generating accurate predictions does not 
necessarily lead to generating knowledge 
or insight. To give another example a Deep 
Learning system may predict the movement 
of stars without discovering the underlying 
laws of nature e.g. gravity, that determine 
those movements. If AI is to revolutionise 
scientific discovery it needs to overcome 
these shortcomings: Predictive AI models, 
impressive as they are, are not game chang-
ers in scientific discovery. They do not 
incorporate a model of the world, and their 
treatment of uncertainty is rudimentary at 
best but most commonly non-existent.

Towards embedding known models of 
the world

The development of AI techniques that 
incorporate our knowledge or belief of 
the world and therefore may be useful in 
causal inference and scientific discovery is 
already underway. Physics Informed Neural 
Networks PINNs (Raissi et al., 2019), are 
an example. PINNs incorporate models of 
the world by defining loss functions which 
penalise solutions which deviate from the 
physical model. Figure 3, modified from 
(Karniadakis et al., 2021), is a graphic repre-
sentation of a PINN for the viscous Burgen 
system of equations, used in fields such as 
fluid dynamics. In Figure 3, x represents 
spatial co-ordinates, t is time, u and û are the 
measured and predicted speeds of the fluid 
at location x and time t, and v is the viscosity 
of the fluid. The usual mean squared error 
(MSE) loss function used to train neural 
networks, 

- 7 -

LNN  has been replaced by a 
weighted average of 

- 7 -

LNN  and a loss func-

Figure 2: The Greek characters πoρϕυρασ spell 
the word porphyras, meaning purple in ancient 
Greek. The Vesuvius Challenge.

https://scrollprize.org/firstletters
https://scrollprize.org/grandprize
https://scrollprize.org/grandprize
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tion which penalises solutions which are far 
from the physics, 

- 8 -

LPDE, where the partial 
derivatives required to compute 

- 8 -

LPDE are 
calculated using automatic differentiation 
techniques. By combining both information 
from physics and data, these types of models 
have the potential to shed more light on 
an issue than either source of information 
alone. PINNs have been applied to a diverse 
range of fields including including energy 
(Hu and You, 2023) and ecology (Robinson 
et al., 2022).

While this is an exciting area of research, 
two points should be noted. The first is that 
the surrogate model û(x,t) does not impose 
the constraints which arise from the physi-
cal system, it only penalises solutions which 
are far from the physics. The second point 
is that the surrogate model, like many pre-
dictive AI techniques which rely on deep 
learning architecture, are not interpretable, 
and insights into the scientific phenomenon 
are limited.

x

t

h11

h12

h13

h21

h22

û
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Figure 3: Physics Informed Neural Network (PINN). Graphical representation of estimating the 
velocity of a fluid u as a function of space x and time t (left box) and the constraints given by the 
physics of the system (right box). The loss function, 

- 8 -

LPDE, is a weighted combination of the loss functions 
of the fit of the neural network (NN) to the data 

- 11 -

Ldata and the fit of the NN to the PDE, 

- 8 -

LPDE.
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Another methodology for incorporat-
ing world views into machine‐learning 
techniques is the Bayesian methodology. 
Indeed the neural network and physics loss 
functions of PINNs have elements of the 
Bayesian framework: the neural network 
loss function is analogous to a likelihood 
and the physics loss function is analogous 
to a prior.

The benefit of the Bayesian framework 
is that it is logically consistent, provides 
estimates of uncertainty via the posterior 
distribution and a formal framework which 
can be generalised to a large class of prob-
lems. The partial and ordinary differential 
equations (PDEs and ODEs), that define 
many physical systems, such the viscous 
Burgen system described above, can be 
expressed as a directed graph, which we 
denote generically by 

- 17 -

G.
An example is given in Figure 4, which 

shows the Lotka Volterra (LV) equations 
for coral reef growth as a graphical model. 
The population of coralgal assemblages x, the 
growth rates by ε and carbonate production 
by C. The interaction between assemblages 
denoted by α. Sediment input (Sed), water 
flow (flow) and depth(Dep) are the basic 
environmental factors influencing coral 
growth, via the function f (environ), and 
the growth rate εi is scaled by this factor, 
see (Salles et al., 2018) and (Pall et al., 2020).

Assuming the physics of coral reef for-
mation are governed by the LV equations, 
i.e. assuming we know 

- 17 -

G, the quantities of 
interest maybe the growth rates ε, the com-
petition matrix A as well as the function 
which maps the impact of environmental 
functions to the coral population, f (environ), 
and estimates and inference of these quan-
tities, jointly denoted by 

- 21 -

θG = (ε , A, f) , is 

via the posterior distribution 

- 22 -

p(θG|data,G), 
conditional on the graph 

- 17 -

G.
It is important to highlight that embed-

ding the LV equations, or any other physical 
model, is equivalent to assuming that the 
relationship between factors in system 
is given by the directed graph structure, 
with probability one. In a Bayesian set-
ting we express this knowledge as a prior 
distribution, i.e. 

- 23 -

P(G = 1), so that there is 
no uncertainty about this graph structure. 
However, much of scientific discovery is 
about uncovering the causal structure of 
a phenomenon, not just the parameters, θ, 
of that causal structure, by placing a prior 
distribution over 

- 17 -

G, s.t. 

- 25 -

G ~ Q(. ), where 

- 25 -

G ~ Q(. ) 
is a distribution.

Learning unknown models of the world
The potential for discovery in science has 
driven much research to learn the struc-
ture of a class of graphs known as Directed 
Acyclical graphs (DAG) (Kitson et al., 2023). 
The requirement that the graph is acyclical 
because we wish to infer causation from 
observational data, (Pearl, 1995), and cycles 
in the graph structure would make that 
impossible. We note that causation is only 
w.r.t an equivalence class (Verma and Pearl, 
1990) and only possible if all relevant fac-
tors are included in the graph, a condition 
that is rarely met, so caution is warranted 
(Dawid, 2010).

Despite these caveats, learning the 
structure of a graph can provide insight 
into phenomenon of interest. Consider for 
example Figure 5, from (Zhu et al., 2023) 
which depicts the causal structure for a 
child’s Body Mass Index (BMI), denoted by 
a red diamond in Figure 5. Figure 5 sheds 
some light on why inventions which target 
proximal and intermediate causes of child-
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hood obesity, such as activity and food type 
consumption, have not had the impact that 
might have been expected. Figure 5 clearly 
shows that childhood obesity is a by-product 
of social disadvantage, its root causes are 
socio-economic status (SE) and parental 
education levels (PE1, and PE2) and that 
tackling downstream and intermediate fac-
tors such as high fat (HF), high sugar (HSD), 
fruit and vegetable consumption (FV) and 

activity (FTA) while ignoring these root 
causes is not sufficient to address the issue, 
see (Zhu et al., 2023) for a full discussion.

Learning the structure of a graph is an 
enormously difficult problem. First, the 
number of possible graphs grows super-
exponentially with the number of factors 
and the space of all possible graphs is 
discrete, making it difficult to explore 
the posterior distribution of the graph. 

Ci Ci6=j

xi xj 6=i

✏i

Flow Sed

Dep

✏i6=j

G :⌘ dxi

dt = f(environ)✏ixi +
PNs

j=1 ↵ijxixj ;
dCi

dt = K ↵iixi

✏i

f(environ)

Coralgal i Coralgal i 6= j

Figure 4: The Lotka Volterra equations depicted as a graphical model. The population of coralgal 
assemblage i is denoted by xi , its growth rate by εi and its carbonate production by Ci . The interaction 
between assemblages i and j is denoted by αij . Sediment input (Sed), water flow (flow) and depth 
(Dep) are the basic environmental factors influencing coral growth, via the function f (environ), and 
the growth rate εi is scaled by this factor.
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Second, for Bayesian networks such as in 
(Zhu et al., 2023), the structure learning 
algorithms can only learn up to a DAG’s 
equivalence class, in which all the DAGs are 
equally likely (Verma and Pearl, 1990), and 
DAGs which belong to the same equivalence 
class can have very different causal struc-
tures. The only way to confirm causality is 
via experimentation.

Knowledge Discovery Systems: 
Algorithms which tell us what we don’t 

know
The examples given throughout this 
paper show how both types of AI tech-
niques, predictive and causal, can be used 
to aid scientific discovery. The former har-
ness the computational advantages that have 
developed over the last 50 years, while the 
latter leverage developments in inferential 
thinking, developed over the last 100 years, 
and both are underpinned by developments 

Figure 5: The completed partially directed acyclic graph (CPDAG) derived from the exquivalence class 
of most probable DAG for 8–10 year olds in the birth cohort of the LSAC (Mohal et al., 2020). The 
child BMI node is highlighted by a red diamond shape. The thicknesses of the edges in the network 
correspond to the strength of relationship between nodes, with a thicker line denoting a higher 
absolute value. The edge coefficients are obtained by regression analysis given the DAG structure. 
The coefficients of undirected edges are inherited from the values of directed edges. The blue and 
orange edges indicate positive and negative relationships, respectively. Orange ellipse nodes denote 
ancestors of child BMI (Zhu et al., 2023).



116

Journal & Proceedings of the Royal Society of New South Wales
Cripps — Artificial and human intelligence for scientific discovery

in new mathematical methods. However 
impressive these achievements may be, they 
are isolated competencies and neither alone 
will provide a step change in scientific dis-
covery. If we are to transform science with 
AI, we need to take a systems approach and 
combine these techniques in a framework 
capable of knowledge discovery.

What should this system look like? It 
starts with the development of algorithms 
which quantify uncertainty. Why? Because 
uncertainty tells us what we don’t know. We 
need AI systems that, given a question, can 
assist in the identification and acquisition 
of valuable information, that can fuse dif-
ferent sources of information in a principled 
manner, that can produce not only predic-
tions but also levels of confidence to guide 
real-time experimental design, that can 
update hypotheses and suggest new ones.

Figure 6 is a conceptual AI framework for 
scientific discovery. It couples ideas from 
Bayesian reasoning with the growing area 
of research on collective intelligence and 
highlights six key features:

1.	Define Problem: scientific discovery starts with 
specific questions about unknown quantities, 
denoted here by 

- 17 -

G, the causal structure, 
and the parameters of that structure 

- 21 -

θG = (ε , A, f). 
These questions need to be the centre of an 
AI framework in which evidence gather-
ing, algorithmic and model advancement, 
system development and decision making 
are connected in a continuous, iterative, 
learning cycle.

2.	Current Beliefs: Collecting evidence on what is 
already known to form 

- 32 -

p(G,θG). Predictive 
AI techniques, such as LLMs can be used 
to probabilistically summarise what is 
already known. Additionally, prior elicita-
tion methods (Falconer et al., 2022), which 
convert varying subjective beliefs from 
experts or communities into probability 
distribution, can be combined with more 
traditional sources of data to gain insights 
that neither source of information alone 
could provide.

3.	Gather Data: it is valuable information, not 
big data that counts. Scientific discovery 
proceeds by identifying information gaps 
and conducting experiments to resolve 
uncertainties. To accelerate this process, 
we need algorithms which accurately 
quantify uncertainty, then, using this 
estimate of uncertainty, assess the value 
of future data sources based on their abil-
ity to reduce uncertainty concerning the 
question at hand. One method of doing 
this is to sequentially acquire data, 

- 34 -

D* = arg
D∈D
max I(D, {G, Θ})., 

that is maximally informative about 

- 17 -

G  , 
and 

- 21 -

θG = (ε , A, f), measured for example by the 
expected mutual information 

- 34 -

I(D, {G, Θ}) 
where

- 33 -

I(D, {G, Θ}) =
G∈G
Σ

θG ∈Θ
∫ P({G,θG}|D)P(D) log




P({G,θG}|D)

P({G,θG})




dθG

- 33 -

I(D, {G, Θ}) =
G∈G
Σ

θG ∈Θ
∫ P({G,θG}|D)P(D) log




P({G,θG}|D)

P({G,θG})




dθG

Figure 6: Conceptual AI framework for scientific 
discovery
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and 

- 34 -

D* = arg
D∈D
max I(D, {G, Θ}).

New sensor technologies and other 
data capture techniques, together with 
predictive AI techniques such as CNNs, 
VAEs, and GANs, can be used to record 
and analyse data from a variety of sources.

4.	Modelling: Construct likelihood models, using 
multiple sources of data and capable of 
inferring casual pathways,

- 35 -

P(D|G,θG) =
N

i=1
Π P(xi|Pai,θG,G), where D = (x1, . . . , xN)

where 

- 35 -

P(D|G,θG) =
N

i=1
Π P(xi|Pai,θG,G), where D = (x1, . . . , xN).

5.	Update Beliefs. The existing informa-
tion contained in 

- 32 -

p(G,θG) is combined 
with information in the new data via 
the likelihood function 

- 35 -

P(D|G,θG) =
N

i=1
Π P(xi|Pai,θG,G), where D = (x1, . . . , xN) in a 

probabilistic framework, quantifying and 
updating uncertainty dynamically as new 
information and discoveries emerge to 
yield the posterior belief

- 36 -

P(θG, G|D) =
P(D|θG, G)P(θG|G)P(G)

P(D)

6.	Decision Making. The incorporation of 
values, desired outcomes and measure of 
success is incorporated in the action a 
from a set of possible actions 

- 37 -

A , via the 
formation of the utility function,

- 38 -

a* = arg
a∈A
max U(a, D),

,
where 

- 38 -

a* = arg
a∈A
max U(a, D), is given by

- 39 -

U(a|D) =
G∈G
Σ

θG ∈Θ
∫ u(a|G,θG, D)P(θG|G, D)P(G|D) dθG.

- 39 -

U(a|D) =
G∈G
Σ

θG ∈Θ
∫ u(a|G,θG, D)P(θG|G, D)P(G|D) dθG.

This is a learning-as-we-go approach: 
actions are adaptively chosen as new infor-
mation comes to hand to maximise some 

prespecified criteria. What is enabled by AI 
is the identification of valuable information 
via algorithms that can quantify what we 
don’t know, and the ability to gather and 
store that information at a rate and in places 
where it may be difficult for humans to do. 
In these types of AI systems, the models 
developed are explainable and transparent. 
The assumptions are explicit, and therefore 
the impact of assumptions can be assessed. 
They are mathematically rigorous and can 
offer guarantees. They are not just based 
on associations between factors but are 
designed to estimate causal pathways so 
that the right intervention is implemented 
at the optimal time. And they incorporate 
human values by being co-designed and co-
implemented by the communities which are 
impacted. In these AI systems, the human 
is not just in-the-loop, the human is at-the-
helm.
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