Events - The Royal Society of NSW - Royal Society of NSW News & Events - Page 9

Royal Society of NSW News & Events

Royal Society of NSW News & Events

1182nd General Meeting

"Pluto and the uber-nerds"

Fred Watson, Anglo-Australian Observatory at Coonabarabran

Wednesday 7 July 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

When is a planet not a planet? When it's a dwarf-planet, perhaps? So what's the difference? In 2006, astronomy's governing body, the International Astronomical Union, wrestled with this very question at their General Assembly in Prague. Before we knew it, media all around the world had declared that Pluto had been "dumped" from its status as the ninth planet, hinting that it had been unfairly thrown out of the Solar System. And in 2008 things got worse, with Pluto joining the lowly ranks of a new class of objects with the unflattering name of Plutoids. In this entertaining and fully illustrated journey through Pluto's eventful history, Fred Watson debates whether pragmatism and good science should prevail over sentiment and tradition.

Fred Watson says he has spent so many years working in large telescope domes that he has started to look like one. He is Astronomer in Charge of the Anglo-Australian Observatory at Coonabarabran, where his main scientific interest is gathering information on very large numbers of stars and galaxies. He is also an adjunct professor at the Queensland University of Technology, the University of Southern Queensland, and James Cook University. Fred is the author of "Stargazer: The Life and Times of the Telescope", and is a regular broadcaster on ABC radio. His new book "Why is Uranus upside down?" is based on listener questions, and was published in October 2007 and won the 2008 Queensland Premier's Literary Prize for Science Writing. In 2003, Fred received the David Allen Prize for communicating astronomy to the public, and in 2006 was the winner of the Australian Government Eureka Prize for Promoting Understanding of Science. Fred has an asteroid named after him (5691 Fredwatson), but says that if it hits the Earth it won't be his fault ...

1181st General Meeting

"Science for gentlemen - the Royal Society of New South Wales in the nineteenth century"

Peter J. Tyler, Historian for the Royal Society of New South Wales

Wednesday 2 June 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

Scientific activity in New South Wales began when James Cook and Joseph Banks voyaged along the eastern coast in 1770. This was the Age of Reason, when educated men challenged traditional knowledge handed down from antiquity and the Bible. Curiosity about natural history had become a fashionable pursuit when the penal settlement at Sydney Cove was established in 1788. Settlers and colonial officials collected and classified the animal, vegetable and mineral constituents of their unfamiliar environment. Even some of the convicts found a profitable sideline collecting shells, birds, plants, and aboriginal artefacts for sale to visiting ships' captains, who in turn sold them for high prices to wealthy collectors in Britain and the Continent.

In June 1821, towards the end of Lachlan Macquarie's term as Governor, seven men formed the grandly named Philosophical Society of Australasia "with a view to inquiring into the various branches of physical science of this vast continent and its adjacent regions." Although it only survived for a little over a year, this was a predecessor of the present Royal Society of New South Wales.

During the nineteenth century the Royal Society and its three antecedents functioned as an exclusive club for men "of honourable reputations" interested in the natural sciences. Almost without exception the members were pastoralists, merchants, or professionals such as clergymen, lawyers or medical practitioners. They classed themselves as gentlemen, because they were not engaged in physical labour. Only a handful were what we would now call scientists, because separate disciplines were only beginning to emerge, and career opportunities were few.

This does not mean that science was merely a hobby, or a part-time diversion. Members read the latest overseas journals diligently, they collected specimens and published papers - often descriptive rather than analytical - and they engaged in vigorous discourse on many of the contentious issues of the period, including Darwin's theories of species evolution at a time when such views were deeply unpopular in Australia. A few conducted original research in fields such as astronomy, geology and aeronautics.

Members of the Royal Society were part of the colonial conservative establishment. Women were excluded, while rigorous admission procedures ensured that "working men" did not become members. Nevertheless, the Royal Society recognised the need to educate or inform the broader public about the achievements of science, and organised regular gatherings for that purpose. It would be easy to characterise the members as typical class-conscious paternalists of the Victorian era, but there were always a few dissenters who did not fit that model.

In the twentieth century more inclusive attitudes emerged gradually, reflecting the changes in the wider community. Today it is difficult to discern any remnants of the earlier caste system. A question we might ponder is - has the influence and public profile of the Royal Society diminished at the same time?

Peter J. Tyler is the Historian for the Royal Society of New South Wales. In 2008-2009 he was the inaugural Merewether Research Scholar at the Mitchell Library. Peter has a BA degree in geography and a Master's degree in history from the University of New England. His PhD thesis from that institution examined the role of the Board of Health in public health administration in NSW from 1881-1973. He also holds a Graduate Diploma in Adult Education from UTS. Previously he worked in management positions in the public, private, and not-for-profit sectors, including fifteen years as Secretary and chief executive of the Workers' Educational Association in Sydney. His published books range over such diverse fields as health care, the building industry, and the public service. Peter Tyler has been President of the NSW Branch of the Australian and New Zealand Society of the History of Medicine, and of the Professional Historians Association (NSW).

Report on the General Meeting

by Donald Hector

The middle of the 19th century was a time of great change in NSW. Responsible government was introduced in 1856 and full manhood suffrage followed two years later. Queensland separated from NSW a year after that. And just 10 years after the introduction of responsible government, Queen Victoria granted Royal Assent to the title of The Royal Society of New South Wales. However, as Dr Peter Tyler, the Society's Historian, explained in his lecture at the 1181st ordinary general meeting on 2 June 2010, The Royal Society of NSW traces its origins back to 1821 when The Philosophical Society of Australasia was formed. There were several early attempts to form such societies with mixed success but this should not understate the commitment of a group of progressives who wanted to see the natural history, agriculture, and culture of the nascent colony flourish.

The Philosophical Society of Australasia was established under patronage of the Governor, Sir Thomas Brisbane and he also became its first President. The founding members included Major Goulburn (the Colonial Secretary) and Edward Wollstonecraft a wealthy merchant and landowner at North Sydney. The purpose was to study the physical sciences and the mineralogy of NSW (which then, of course, included what is now Queensland and Victoria). The early Society only lasted a year or so but there were other attempts to stimulate more intellectual activities in the colony in the first part of the 19th century. The first subscription library was started by Wollstonecraft in 1826 and between 1820 and 1850 other societies began, such as the Agricultural Society (which lapsed for some years and then was re-established in the 1850s), The Australian Society for the Encouragement of Arts, Science, Commerce, and Agriculture (more commonly referred to as the Australian Philosophical Society) but, like the early Philosophical Society, these early groups generally did not thrive.

But by the 1860s, with Sydney having been formally declared a city (in 1842), NSW having been granted responsible government, and the buoyant economic growth of the period created an environment where interest in science, art, and literature blossomed. The University of Sydney was founded in 1854 and the time was right for a successful society to be established.

Just six years after the granting of Queen Victoria's Royal Assent there were 122 members of the Society across a range of occupations - pastoralists, businessman, scientists, artists, lawyers, and the clergy - and by the 1890s there were nearly 500 members. In the latter half of the 19th century a number of eminent scientists (Prof John Smith (physics and medicine), Prof Archibald Liversidge (geology and chemistry), Sir Thomas Anderson Stuart (physiology) were but a few). The Society's transactions were published in a prestigious peer-reviewed journal (which continues today) and attracted publications from such eminent scientists and engineers as Lawrence Hargrave.

The first 80 years of the Society were colourful, strongly influenced by the personalities of the time when NSW was finding its feet as a society. Dr Tyler's work was made possible through his appointment as the inaugural Merewether Scholar of the State Library of NSW.

1180th General Meeting

"The weird world of nanoscale gold"

Mike Cortie, Director of the Institute for Nanoscale Technology, University of Technology, Sydney

Wednesday 5 May 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

The field of `nanotechnology' has captured the imaginations of many. There are many new journals dedicated to the subject and the entertainment media have featured it in several recent movies and books. But what is `nanotechnology', and is it actually a new thing? Some people have described much of current nanotechnology as just old things in new clothes. I will show that while the study and exploitation of matter at the nanoscale is old news, there really is something quite startlingly different about the new field of `nanotechnology'. Real nanotechnology is the most reductionist form of science and technology imaginable. In the real thing, the basic paradigm is to define a desired technological functionality, and then to work backwards atom by atom to design a system to achieve that effect.

Some materials, such as silicon, carbon, DNA, titanium dioxide and gold have become very prominent within the nanotech arena. This has not been the result of some arbitrary choices, rather these particular materials offer uniquely attractive engineering properties that specifically commend their selection for nanoscale systems and devices. Gold is particularly interesting to myself and my colleagues, and much of our research targets or uses this element. The reason gold is popular in nanoscale research and technology is that it offers an unrivalled combination of material properties for applications requiring a conductor. But what can you do with it? In my talk I will show first, how things become a bit weird with gold as the size scale is shrunk to nano-dimensions, and then I will describe some of the many useful devices that can be fabricated by exploiting these properties. Some of the interesting existing and prospective applications for gold at the nanoscale include bio-diagnostics, biosensors, solar filters, optical filters, colorants and pigments, single electron devices, new kinds of digital memory, and plasmonic circuitry. But it is a fast-moving field and who knows what new ideas will pop up in the next couple of years.

Mike Cortie is the Director of the Institute for Nanoscale Technology at the University of Technology, Sydney (UTS), in Australia. He was born and educated in South Africa. He has a BSc(Eng) degree in Physical Metallurgy, a Masters degree earned from research on the corrosion of zirconium and a PhD degree, which was focused on metal fatigue and awarded in 1987. After a stint at South Africa's Atomic Energy Corporation and at Pylon Engineering, a gear-cutting works, Mike joined Mintek, a minerals and metals research organisation. Mike headed the Physical Metallurgy Division of Mintek between 1997 and 2002. The Division consults widely to South African and international industry and now generates the major portion of its funds from foreign contract research. He relocated to Australia and joined UTS in July 2

Mike's current research interest is nanotechnology, and in particular the applications of precious metals in nanotechnology. Previous research activities included research on ferritic and nickel-substituted stainless steels, on intermetallic compounds with the C1 (CF12) and B2/L21 crystal structures, on X-ray diffraction and crystallographic texture of bcc and fcc alloys, on cellular automata and the simulation of metal solidification, cracking and solid state transformations, on explosive interactions between molten metal and water, on displacive transformations in Pt-containing alloys and compounds, on the phase relationships in the Al-Au-Cu ternary system, and on the crystal structures of the martensite phase formed by displacive phase transformation in the b Au-Al-Cu shape memory alloy. He has also been active outside the materials arena, and has made contributions to the mathematical modelling and graphics rendering of mollusc shells, and the science education of children.

2010 Sydney Lecture Series

​Wednesday
17th February

​The Four Societies Lecture. Hosted by Australian Nuclear Association, Nuclear Panel of Engineers Australia, Australian Institute of Energy and The Royal Society of NSW

1178th Ordinary General Meeting

An Industry Update on Global Nuclear Power and the Opportunities for Australia

Dr Selena Ng, Areva NC, Australia

Venue: Engineers Australia Lecture Theatre, 8 Thomas St, Chatswood

Time: 5.30pm for 6.00pm
​Friday
12th March

​1179th Ordinary General Meeting & 143rd AGM with the Anniversary Address

Annual Dinner and Presentation of Awards for 2009

John Hardie, President of the Royal Society of NSW 2007-2010
​Wednesday
7th April

Science and Scientists in the Modern World

Professor Jill Trewhella, University of Sydney
Wednesday
5th May

1180th Ordinary General Meeting

The Weird World of Nanoscale Gold

A/Professor Mike Cortie​
Wednesday
2nd June

​1181st Ordinary General Meeting

Science for Gentlemen - The Royal Society of NSW in the Nineteenth Century

Dr Peter Tyler, Historian for the RSNSW
​Wednesday
7th July

​1182nd Ordinary General Meeting

Pluto and the Ueber-nerds

Dr Fred Watson, Anglo Australian Observatory
​Wednesday
4th August

​1183rd Ordinary General Meeting

The Dynamic Brain: Modelling Sleep, Wake, and Activity in the Working Brain


Professor Peter Robinson, University of Sydney
​Wednesday
1st September

​1184th Ordinary General Meeting

Long-term Changes in Solar Activity - Including the Current "Grand Minimum"

Dr Ken McCracken, Senior Research Associate, University of Maryland
​Wednesday
6th October

​1185th Ordinary General Meeting

Is the Climate Right for Nuclear Power?

Dr Ziggy Switkowski, ANSTO
​Wednesday
3rd November

​1186th Ordinary General Meeting

Powering the US Grid from Solar and Wind

Dr David Mills, Chief Scientific Officer and Founder of Ausra, Inc.
​Friday
26th November

1187th Ordinary General Meeting

2010 Liversidge Lecture in Chemistry

Professor John White CMG FAA FRS, Australian National University​
​December

​Studentship recipients

1176th Ordinary General Meeting

"The real significance of hobbits: hominid biogeography in South East Asia"

Professor Michael J. Morwood, Professor in Archaeology, School of Earth and Environmental Studies, University of Wollongong

Wednesday 4 November 2009 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

In 2004 Professor Mike Morwood led the team that found the skeleton of a previously undiscovered human species on the island of Flores. The 'hobbit' skeleton was of a much smaller stature than present-day humans, being that of an adult who was only one metre in height. Evidence suggests that these 'hobbits' may have lived from 95,000 to 13,000 years ago and were probably descendants of the Homo erectus population that had evolved in isolation on Flores. It is believed that the 'hobbit' may have still been in existence when the 16th century Dutch traders arrived at the island. This discovery has raised questions about the nature of human of evolution.

The discovery of an endemic species of human on Flores was unexpected, but no more so than finding evidence of Homins on the islands from 880,000 years ago. This lecture will explain why the 2004 discovery was not wholly unexpected with reference to the faunal biogeography of South East Asia. It will conclude with some of the implications for early hominin and modern human dispersal mechanisms, and for the future archaeological research in the region.

The speaker's presentation can be found here: Mike Morwood's Talk (5 MB PDF).

Professor Michael Morwood has carried out extensive research in New Zealand and throughout Queensland, New South Wales and the Northern Territory, both as an academic researcher and as a public archaeologist. He is particularly interested in ethnohistory, material culture studies and the social-ceremonial role of art in Aboriginal Culture.

In 2007, Professor Morwood and Penny Van Oosterzee won the John Mulvaney Book Award for the publication of "The Discovery of the Hobbit: The Scientific Breakthrough that Changed the Face of Human History" documenting his work on the Indonesian island of Flores. In addition to his work in Indonesia, he is an expert in Australian Aboriginal rock art and the author of "Visions from the Past: The Archaeology of Australian Aboriginal Art".

The 2009 Clarke Memorial Lecture

"Climate change through the lens of the geological record: the example of sea level"

Professor Kurt Lambeck, AO FAA FRS
Distinguished Professor of Geophysics, Australian National University
President of the Australian Academy of Science

Friday 30 October 2009 at 5.30 pm
Eastern Avenue Auditorium, University of Sydney

The 2009 Clarke Memorial Lecture is presented in conjunction with The University of Sydney and The Geological Society of Australia

Climate change has been with the planet since the time of the formation of the oceans and atmosphere and is recorded, albeit imperfectly, in the geological record. One of these records is the change in sea level through time, a complex variable that contains implicit information not only on climate but also on the tectonic and geological evolution of the planet. He will address aspects of the underpinning science and what we can learn from it, focussing on the best-known part of the record, that for the last glacial cycle.

The modern instrumental record is much more precise and has higher resolution but will also contain in addition to the 'natural' variability any new signals that may result from human impact on climate. The challenge is to separate these 'natural' and 'anthropogenic' forcings if forecasts of future change are to be meaningful.

The problems encountered are similar to all other indicators of climate change – of separating natural and human forcing from instrumental and geological or historical records when the length of the latter are about the same as the time that human impacts may have been effective.

Professor Lambeck will use the sea level record as an illustration of many of the issues that need to be understood for a meaningful interpretation of the evidence. In so doing he will raise the role of the IPCC and where the IPCC findings are tracking in 2009; and how the public debate on climate change appears to be becoming increasingly confused while the underpinning science is becoming more robust.

The speaker's presentation can be found here: Kurt Lambeck's Clarke Lecture (2.9 MB PDF).

Professor Lambeck's research interests range through the disciplines of geophysics, geodesy and geology with a focus on the deformations of the Earth on intermediate and long time scales and on the interactions between surface processes and the solid earth.

Past research areas have included the determination of the Earth's gravity field from satellite tracking data, the tidal deformations and rotational motion of the Earth, the evolution of the Earth-Moon orbital system, and lithospheric and crustal deformation processes. His recent research work has focused on aspects of sea level change and the history of the Earth's ice sheets during past glacial cycles, including field and laboratory work and numerical modelling.


Professor Lambeck has been at the Australian National University since 1977, including ten years as Director of the Research School of Earth Sciences. Before that he was at the University of Paris and the French Space Agency (1970-1977), and at the Harvard-Smithsonian observatory (1967-1970). His doctorate is from Oxford (1967) and his first degree from the University of New South Wales (1963). He was elected to the Australian Academy of Science in 1984 and became its President in 2006.

He is a Fellow of the Royal Society (1994), and a foreign member of the Royal Netherlands Academy of Arts and Sciences (1993), the Norwegian Academy of Science and Letters (1994), Academia Europaea (1999), the Académie des Sciences, Institut de France (2005), and the US National Academy of Sciences (2009)

1175th Ordinary General Meeting

"The SKAMP project - a telescope reborn to look back in time"

Professor Anne Green
Head, School of Physics, University of Sydney

Wednesday 7 October 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

For more than 40 years the University of Sydney has operated the Molonglo Observatory. Recently, the Molonglo Observatory Synthesis Telescope completed a detailed imaging survey of the southern sky at a frequency of 843 MHz. What next? We are undertaking a complete renewal of the signal pathway as part of Australia's contribution to the Square Kilometre Array (SKA) project, a powerful new radio telescope. Our project is the SKA Molonglo Prototype (SKAMP), which will be a new low frequency spectrometer with wide-field imaging and polarization capability. This talk will describe the project and how it builds on the previous telescope and its science achievements. Two of the key science goals to be undertaken initially will be a survey of red-shifted neutral hydrogen gas and a study of the transient radio sky. With the subsequent polarization capability, we will map the magnetic field structure of our Galaxy and explore cosmic magnetism.

The speaker's presentation can be found here: Anne Green's Talk (3.6 MB PDF).

Professor Anne Green is a radio astronomer whose main research focus is the study of the structure and ecology of our Milky Way Galaxy with particular interest in supernova remnants, the relics of exploded stars. She was Director of the Molonglo Observatory for ten years and is now Head of the School of Physics and Director of the Science Foundation for Physics within the University of Sydney, the first woman to hold these positions. Professor Green is a graduate of both Melbourne and Sydney Universities and was the first female PhD graduate in the School of Physics at the University of Sydney. She held an Alexander von Humboldt Postdoctoral Research Fellowship at the Max-Planck-Institut for Radioastronomie in Bonn, Germany, before retiring from academia to travel Europe, live in Belgium and Switzerland and have two children. After a return to Sydney and fifteen years away from astronomy, she resumed her research career. She is now leader of the SKA Molonglo Prototype (SKAMP) project, which is prototyping technology and undertaking science projects as a forerunner to an amazing new telescope for the future called the Square Kilometre Array. Professor Green is also the Chair of the International Astronomical Union Working Group whose goal is to improve the status of women in astronomy.

1174th Ordinary General Meeting

"Weird animal genomes and sex"

Professor Jenny Graves, Head, Comparative Genomics Research Group, Australian National University
Director, ARC Centre of Excellence for Kangaroo Genomics
Professorial Fellow, Department of Zoology, University of Melbourne

Wednesday 2 September 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Whether a baby develops as a boy or girl depends on a single gene on the Y chromosome. In humans and other mammals, females have two X chromosomes, but males have a single X and a Y that bears the testis-determining gene (SRY) that induces testis differentiation and switches on hormones that masculinize the embryo. The human X is a middle-sized, ordinary chromosome, though it is rich in genes involved in reproduction and intelligence (often both). But the tiny Y is a genetic wasteland – full of genetic junk and bearing only 45 genes, most active only in testis. How did human sex chromosomes get to be so weird?

Our strategy is to compare the chromosomes, genes and DNA in distantly related mammals and even birds and reptiles (which have completely different sex determining systems). The genomes of Australia's unique kangaroos and platypus, now being completely sequenced, are a goldmine of new information. Kangaroo sex chromosomes reveal the original mammal sex chromosomes, while the bizarre platypus sex chromosomes (more related to those of birds) tell us that our sex chromosomes are relatively young.

Our works shows that the human X and Y evolved from an ordinary chromosome pair just 150 million years ago. It is degrading progressively and I predict it will disappear in just 5 million years. If humans don't become extinct, new sex determining genes and chromosomes must evolve, maybe leading to the evolution of new hominid species.

The speaker's presentation can be found here: Jenny Graves Talk (25 MB PDF).

Jenny was born and educated in Adelaide. She was no science star at school, but topped the state in Geography. She didn't much like biology but, after undergraduate studies at Adelaide University, a fascination with genetics led her rather accidentally to a PhD in molecular biology at the University of California at Berkeley, thanks to a Fulbright award. Jenny then spent nearly 30 years at La Trobe University in Melbourne before moving to the Australian National University in 2001.

In the 1970s, Jenny stumbled on the potential of Australia's unique fauna (mammals, birds, and reptiles) to study genetic structures and regulation systems conserved from the earliest vertebrates through to humans. By exploiting the genetic diversity of Australia's unique mammals, her group have gained insights into mammalian sex, development, genetic disease, defence mechanisms, and species survival. Her lab's unique contributions to understanding the evolution, function and organization of the mammalian genome have had major impacts on current thinking in the field.

Jenny has been an enthusiastic advocate for comparative genomics. She set up and directs the ARC Centre of Excellence for Kangaroo Genomics, which has secured a key role for Australia in the sequencing and analysis of the kangaroo genome. Her contributions to science have been recognized by election to the Australian Academy of Science in 1999, a Centenary Medal in 2002 and the Macfarlane Burnet Medal in 2005. She is a 2006 Laureate of the L'Oréal-UNESCO Awards For Women in Science.

Research projects

Our group (Comparative Genomics) is famous for studying genes and chromosomes of Australian animals. Every project depends ultimately on samples from a variety of Australian animals such as kangaroos and platypus, but also exotics like devils (Tasmanian) and dragons (lizards). Pat is a whiz at organizing legalities and technicalities, as well as animal handling and sampling; Jenny would really prefer to work on tomatoes or fruitflies. We culture tiny samples of skin cells in the laboratory. Jenny's training in cell culture at Berkeley was used to establish methods for growing just about anything, and Pat now runs our unique cell culture lab with exacting standards. Our stock in-trade is physical mapping of genes onto chromosomes, and getting brilliant chromosome preparations is crucial; here Pat's training in human cytogenetics complements Jenny's training in molecular cytology.

We use these basic techniques more and more for large-scale projects on the genomes of Australian mammals. Basic work had to be done to characterize the chromosomes of the kangaroo and the platypus before the complete sequence of their genomes (costing many millions of dollars) could be interpreted. Platypus chromosomes caused major headaches because they have weird multiple sex chromosomes: Jenny had been trying to sort them out for 20 years, now an onslaught using new molecular techniques allowed Jenny and Pat, with a postdoc and research assistant, to sort out which chromosome is which.

Two major projects last year that Pat and Jenny collaborated on were to construct physical maps of the platypus and the opossum; these required painstaking isolation and characterization of large DNA fragments, tagging them with a fluorescent dye, then attaching them to chromosomes where they home in on the DNA containing this sequence and reveal their presence by a bright spot on one of the chromosomes. Pat has ensured that the quality of the chromosomes, the probes and the images are all 100%, and Jenny has made sure the locations make sense and put the map together with other genomic data. These maps were crucial for deciphering the complete DNA sequence of the first marsupial and the first monotreme genome. These projects culminated in major papers on which Pat and Jenny are both authors.

1173rd Ordinary General Meeting

"What will coral reefs look like in 2050?"

Associate Professor Peter Ralph, Executive Director, Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney

Wednesday 5 August 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Corals have existed for millions of years and survived in a wide range of climates; but coral bleaching seems to have pushed corals to the brink. Research in to coral bleaching has been at the forefront of the climate change agenda for many years. It attracts much public interest, but we still do not know why corals die at temperatures only a few degrees higher than their optimum. Given the onset of coral bleaching and the combined stress of ocean acidification, I will describe how I see the Great Barrier Reef in 2050. Will the reef be dominated by fleshy macroalgae, soft corals or just a film of bacteria covering the dead coral skeletons?

The speaker's presentation can be found here: Peter Ralph Talk (36 MB PDF).

Peter Ralph is an Associate Professor at UTS and the Executive Director of the Plant Functional Biology and Climate Change Cluster (C3). He has over 15 years experience in the areas of photosynthetic physiology and ecology of marine plants and is widely regarded as a world expert in this field. His research team has made significant contributions to the physiology of marine plants, including corals, Antarctic sea-ice algae, seagrasses and macroalgae. His group includes senior research fellows, 3 post docs, 7 PhD students and 4 Honours. His team has on-going research collaborations with Danish, German, UK, US and Canadian photobiologists. Peter has been addressing questions fundamental to advancing knowledge of marine photosynthetic organisms that survive at the edge of their environmental envelope. His group is currently developing mechanistic models of microalgal photo-physiology, as well as developing a fluorescence-based proxy of primary production.

1172nd Ordinary General Meeting

"Accurate measurement: the vital backbone of Australian science & industry"

Dr Laurie Besley, Chief Executive & Chief Metrologist, National Measurement Institute

Wednesday 1 July 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Measurement pervades all aspects of our society, from the sale of food by weight in the supermarket, to the management of data transfer systems to better than nanosecond precision for the telecommunications sector. The National Measurement Institute (NMI) is the national core of Australia's expertise in measurement and has the responsibility to address this entire spectrum of needs. It not only maintains, develops and disseminates the primary measurement standards for Australia in physics, chemistry and biology, but also operates specialist laboratories based on these measurement skills, such as a mainstream forensic laboratory, Australia's only WADA-accredited sports drugs laboratory, and a high-voltage laboratory for the electrical utilities. The talk will discuss how NMI addresses this myriad of challenges and outline the outcomes to Australia from its activities.

Dr Besley's scientific and management career has spanned a diversity of fields. including, for the last dozen years, metrology in chemistry. After beginning his career in cryogenic temperature measurement and spending 20 years working in physical metrology, he applied his PhD in chemistry to transplanting the metrological approach from physics to chemistry and initiated work in this area within what was then the National Measurement Laboratory (NML) in Australia. He then became Director of the National Analytical Reference Laboratory within the Australian government body AGAL. When AGAL and NML both became part of the new organisation NMI in 2004, he was first appointed to a role as general manager of the metrology in chemistry branch and late in 2007 was given his present role as Chief Executive. Dr Besley has a publication list of some 75 journal publications in a variety of different fields of metrology.

Dr Besley is a member of the Royal Australian Chemical Institute and a Fellow of the Institute of Physics (UK). He is also a member of the NATA Council. He is active in a number of international forums including being a consultant to the Executive Committee of the Asia-Pacific Metrology Programme. He is a member of the editorial boards of the international journals "Metrologia", "IET Science Measurement & Technology", and "Accreditation and Quality Assurance". He has worked on a number of occasions as a consultant for the Technical Cooperation programme of the German metrology institute (PTB), mostly in Thailand, and most recently in Sri Lanka.


1171st Ordinary General Meeting

"New environmentally friendly approaches to cooling buildings"

Professor Geoff Smith, Department of Physics and Advanced Materials, University of Technology, Sydney

Wednesday 3 June 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

The potential for energy savings in the cooling of buildings is very large and of growing importance as living standards rise, as global warming impacts, and as the "heat island" effect gets worse with increased urbanisation. There are two aspects: (i) passive systems which minimise heat gains, and (ii) active systems and strategies which minimise or eliminate the need for electrically powered cooling. This talk will examine novel materials and systems which play a role in both active and passive reductions in the demand for electrically powered cooling. It will also include results with special paints and nanostructured coatings developed at UTS.

Amplification of night sky radiative cooling using nanostructures and heat mirrors will be outlined, in which material spectral properties and system design in combination optimally exploit the spectral and directional properties of incoming atmospheric thermal radiation. Useful cooling powers under clear skies at temperatures down to ~15℃ below ambient are feasible in well engineered systems, while simple low cost systems can achieve useful cooling powers in the range 5℃ to 10℃ below ambient. There are a many ways such capabilities can be put to use.

The speaker's presentation can be found here: Geoff Smith's Talk (4.6 MB PDF).

Geoff Smith is Professor Emeritus in Applied Physics at the University of Technology, Sydney Australia. He has worked on the science and applications of nanomaterials for over 30 years. His group, in partnership with local and international industry, has pioneered developments in the fields of solar energy, energy efficient windows and paints, radiative cooling, natural lighting and LED lighting. Products and several patents have followed. Key contributions to nano-photonics, thin film optics and polymer optics feature in his work with over 180 reviewed papers and several book chapters. He is chair of the Australian Standards committee on roof glazing and skylights, helped formulate Australia's recent energy efficient building codes, and has chaired an annual International Conference in the USA (SPIE - Nanostructured Thin Films) since 2006. Geoff has a number of overseas and local awards in the renewables and energy field including an honorary doctorate from the University of Uppsala in Sweden in 2003. He is a Fellow of the AIP and of the Institute of Energy.

A summary of the July lecture by Dr Jim Franklin

There is a hole in the atmosphere that can be used to cool buildings. This is important because the electricity used for air-conditioning is a major contributor to greenhouse gas emissions and building running costs. Professor Geoff Smith from UTS explained that at wavelengths below 8 micrometers, the atmosphere is opaque because of absorption from water vapour. Above 13 micrometres it is opaque because of absorption from carbon dioxide and water vapour. So for long and short wavelengths we see a hot opaque atmosphere and no radiative cooling is possible.

However, between 8 and 13 micrometers the atmosphere is fairly transparent (opacity is 17 % at the vertical, increasing to 100 % at the horizon). So at this "wavelength hole", an object can radiate its heat away through the atmosphere into space and receive little heat back from the atmosphere. The cooling effect is greatest towards the vertical. Professor Smith has shown that net-cooling powers can in principle exceed 200 W/m2. Experimental systems developed by his group can run 10°C below ambient at night and pump 135 W/m2. Or they can achieve much lower temperatures with smaller cooling powers. The key is to use an optical design in which the radiator only sees the "cool" sky at the zenith. If these systems are shielded from the direct sun, they can also give good cooling during the day. Prof Smith has investigated special selective surfaces that radiate most efficiently in the "wavelength hole" with little emission at other wavelengths. Surprisingly, these selective surfaces offer little advantage, except when one is striving for the lowest possible temperature.

Professor Smith then discussed new building materials he has worked on that can help cool buildings. With BASF and others he has helped develop special paints that reflect the infrared part of sunlight but look like ordinary pigments to the naked eye. A special white paint developed by UTS can greatly decrease solar heating. When tested on a Queensland supermarket it cut air-conditioning power consumption by two thirds.

Another interesting material described by Prof Smith is Micronal sheeting (made by BASF). This is plasterboard with a high loading of microcapsules of an alkane wax that changes phase at room temperature. This gives the material superb heat storage capabilities. A 3 cm sheet has the same heat capacity as 18 cm of concrete or 23 cm of brick. A building using this material can have enhanced comfort and reduced costs with minimal air conditioning or heating. In summer one lets in the cold night air to chill the sheets, and then uses them to cool the building during the hot part of the day. In winter, the noon sun warms the sheets, which can heat the building at night. Clearly radiative cooling and new, high tech materials have an important future in cooling buildings.

1170th Ordinary General Meeting

"A scientist vs. the law"

Professor D. Brynn Hibbert
Chair of Analytical Chemistry, University of New South Wales

Wednesday 6 May 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

A largely anecdotal review of the author's work in the courts, including bogus health products, unsuccessful defences of murderers and racehorse trainers, and highly lucrative patent cases.

One example is Ion mobility spectrometry. This is embodied in instruments such as the Ion Scan and is used at airports to detect drugs or explosives at trace levels. The author has given evidence in trials of drug importation in which an Ion Scan has revealed the presence of a drug with subsequent seizure of substantive amounts. In an early trial, during the author's evidence the "invisible hand" defence was coined when the trial judge misheard a question from counsel and caused the following conversation. Judge: "Did you say the hand that touched the cocaine was invisible?". Counsel: "No your honour, I said the cocaine that the hand touched was invisible".

The Ion Mat sold for around $3,000 and apart from claiming to improve your sex life, it cured cancers (various) and ameliorated bad breath. The mattress did this by creating "beneficial negative ions" despite the author's opinion that the electric field was about the same as a toaster and whereas we do not expect our household appliances to make us better, this would not either. The prosecution by the ACCC was a success, but at the end of the trial the principals of the company fled with, it is said, $12 million.

There will be some discussion of statistics (Lies, damned lies and ...), dendrites and fractals, stolen wine, contaminated beer and defunct batteries. This will lead to a reflection on expert opinion and the role of professional societies in maintaining standards of professionalism.

The speaker's presentation can be found here: Bryn Hibbert's Talk (1.3 MB PDF).

Professor Hibbert occupies the Chair of Analytical Chemistry at the University of New South Wales in Sydney. He is the second incumbent and arrived in Australia from England in 1987. His research interests are in electroanalytical chemistry and chemometrics and metrology in chemistry, but he also does a sideline in expert opinion, scientific fraud and presenting science to the public. He has published around 200 papers, 6 books and 2 patents. His most recent book Quality Assurance in the Analytical Chemistry Laboratory published by Oxford University Press won the RACI Olle Prize for 2007. He is past Chair of the Analytical Division of the RACI, Secretary of the IUPAC Analytical Division and was co-chair of Interact 2002.

Pollock Memorial Lecture 2009

"The universe from beginning to end"

Dr Brian Schmidt, Federation Fellow, Mount Stromlo Observatory, ANU

Wednesday 29 April 2009 at 6.30 pm
Eastern Avenue Auditorium, University of Sydney

The Pollock Memorial Lecture is presented jointly by the University of Sydney and the Royal Society of NSW. The Lectureship has been awarded about every four years since 1949 and is sponsored by the University of Sydney and the Royal Society of NSW in memory of Professor J.A. Pollock, Professor of Physics at the University of Sydney (1899-1922) and a member of the Society for 35 years.

Despite hundreds of years of dedicated scientific research, we only know what 4% of the Universe is made up of. In the last 15 years we have realised that there is another 96% of missing stuff that we just can't see. This missing stuff is made up of two mysterious substances, Dark Matter and Dark Energy, that are battling for domination of the Universe.

In the Pollock Memorial Lecture, Professor Brian Schmidt, from the Australian National University, will describe exciting new experiments, including those using the SkyMapper telescope, that are monitoring the struggle between these two dark forms. The aim is to predict the ultimate fate of the Cosmos!

Professor Brian Schmidt is a Federation Fellow at the Australian National University's Mount Stromlo Observatory. While at Harvard University in 1994 he formed the High Z SN Search team, a group of 20 astronomers on five continents who used distant exploding stars to trace the expansion of the Universe back in time. This group's discovery of an accelerating Universe was named Science Magazine's Breakthrough of the Year for 1998. Brian is continuing his work using exploding stars to study the Universe, and is leading Mt Stromlo's effort to build the SkyMapper telescope, a new facility that will provide a comprehensive digital map of the southern sky from ultraviolet to near infrared wavelengths.

Annual Dinner and Awards 2009

His Honour Justice James Allsop, President of the NSW Court of Appeal

The Society held a very successful Annual Dinner at the Forum Restaurant, Darlington Centre at the University of Sydney on 13 March. The Guest-of-Honour was His Honour Justice James Allsop, President of the NSW Court of Appeal who replaced our Chief Patron, the Governor-General at relatively short notice. The Society thanks His Honour for his attendance and for his very insightful Occasional Address, which touched on the relationship between the Society and the legal profession.

The other highlight of the evening was the presentation of our Awards for 2008. His Honour presented the Clarke Medal (this year it was for botany) to Professor Bradley Potts from the University of Tasmania and the Edgeworth David Medal for a young scientist to Dr Adam Micolich of the University of NSW. Associate Profesor Bill Sewell read the citations which were followed by very generous remarks by the recipients in accepting the Awards.

His Honour Justice James Allsop, the President John Hardie and Professor Bradley Potts
His Honour Justice James Allsop, the President John Hardie and Dr Adam Micolich

For further details see the March 2009 Bulletin No. 323.

The Four Societies Lecture 2009

Australian Nuclear Association, Nuclear Panel of Engineers Australia, Australian Institute of Energy and The Royal Society of NSW

"An industry update on global nuclear power and the opportunities for Australia"

Dr Selena Ng, Areva NC, Australia

Wednesday 25 February 2009 at 6 pm
Engineers Australia Lecture Theatre, 8 Thomas St, Chatswood

Countries world-wide are committing to nuclear power as an integral part of their future energy mix, as they struggle to meet increasing electricity demands in a competitive and secure way while reducing their carbon emissions. Here in Australia, nuclear power, uranium mining, nuclear weapons, and radioactive waste - just to name a few - do make appearances on the public and political agenda from time to time, although the issues are sometimes confused, and often clouded by conflicting 'facts'. This talk will aim to set the record straight from an industry perspective, covering some of the long-argued topics such as proliferation, safety, and waste. It will also look at projected industrial developments over the coming decades, and the opportunities for Australia to get involved.

Dr Selena Ng is currently responsible for developing AREVA's nuclear activities in Australia. Prior to returning to Australia in 2007, she spent a number of years at AREVA's headquarters in Paris, dealing with the recycling of used nuclear fuel and waste management, and issues such as nuclear non-proliferation, a topic about which she has co-authored and presented papers at various international forums. Selena holds a BSc(Hons) from Monash University, a PhD in theoretical physics from the University of Cambridge, and a diploma in management from the College des Ingenieurs.

2009 Sydney Lecture Series

​Wednesday
25 February

​The Four Societies Lecture. Hosted by Australian Nuclear Association, Nuclear Panel of Engineers Australia, Australian Institute of Energy and The Royal Society of NSW

An Industry Update on Global Nuclear Power and the Opportunities for Australia

Dr Selena Ng, Areva NC, Australia
This meeting will also be our 1168th Ordinary General Meeting

Venue: Engineers Australia Lecture Theatre, 8 Thomas St, Chatswood
Time: 5.30pm for 6.00pm
​Friday
1 April

​Presidential Address: Constancy Amid Chaos: Defining our Place in the World

John Hardie, President of the Royal Society of NSW 2007-2009

142nd Annual General Meeting
and 1169th Ordinary General Meeting
​Thursday
30 April

​The Pollock Memorial Lecture, presented by the University of Sydney and the Royal Society of NSW.
 
The Universe from Beginning to End

Dr Brian Schmidt, Federation Fellow, Mount Stromlo Observatory, ANUThe Pollock Memorial Lecture 6.30 pm, Eastern Avenue Auditorium, Sydney Uni
​Wednesday
6 May

1170th General Meeting

A Scientist vs. the Law

Professor Brynn Hibbert, Chair of Analytical Chemistry, University of NSW​
​Wednesday
3 June

1171st General Meeting

New Environmentally Friendly Approaches to Cooling Buildings

Professor Geoff Smith, Professor of Physics, University of Technology, Sydney​
​Wednesday
1 July

​1172nd General Meeting

Accurate Measurement: the Vital Backbone of Australian Science & Industry

Dr Laurie Besley, Chief Executive & Chief Metrologist, National Measurement Institute
​Wednesday
5 August

​1173rd General Meeting

What Will Coral Reefs Look Like in 2050?

A/Professor Peter Ralph, Head, Aquatic Photosynthesis Group, University of Technology, Sydney
​Wednesday
2 September

​1174th General Meeting

Weird Animal Genomes and Sex


Professor Jenny Graves, Head, Comparative Genomics Research Group, Australian National University
Wednesday
7 October



​1175th General Meeting

The SKAMP Project - A Telescope Reborn to Look Back in Time

Professor Anne Green, Head of School of Physics, University of Sydney
​Friday
30 October

​Clarke Memorial Lecture

Climate Change through the Lens of the Geological Record: the Example of Sea Level

Professor Kurt Lambeck, AO, FAA, FRS, Distinguished Professor of Geophysics at the Australian National University, President of the Australian Academy of Science

Venue: Eastern Avenue Auditorium, University of Sydney at 5.30 pm
​Wednesday
4 November

​1176th General Meeting

Hominid Biogeography in South East Asia: the real significance of Hobbits

Professor Mike Morwood, Professor of Archaeology, University of Wollongong
​Wednesday
2 December

​Studentship Awards

Studentship Awards 2009, in conjunction with our Christmas Party

The 2008 Liversidge Lecture

"Molecular materials - from clean energy storage to shrinking
crystals"

Cameron Kepert, Professor of Chemistry & Federation Fellow, School of Chemistry, University of Sydney

Wednesday 3 December 2008, 6.30 for 7 pm
Conference Room 1, Darlington Centre, City Road

ABSTRACT

Once thought of as little more than symmetrical arrangements of discrete molecules, molecular materials have recently emerged as very much more than the sum of their individual parts. This lecture will describe how these materials are having considerable impact in two highly topical areas.

Hydrogen Storage. In the proposed hydrogen economy, hydrogen gas replaces fossil fuels as energy carrier within a potentially greenhouse-free energy cycle. One of the principal challenges in the adoption of this cycle is the design of efficient methods to store hydrogen - a notoriously volatile gas. It has been recently shown that molecular materials are excellent candidates in this area due to their very high surface areas and functional surfaces. Efforts to optimise the hydrogen storage capabilities of such materials will be described and a comparison with other materials given.

Negative Thermal Expansion (NTE, i.e., contraction with heating). The expansion of matter with increasing temperature is the cause of numerous technological problems. Once thought to be an immutable law of nature, it has been shown in the past decade that materials can be made that actually shrink upon warming. In addition to addressing the research behind this discovery, a brief description will be given of commercialisation efforts in this area.

BIOGRAPHICAL NOTES

Professor Cameron Kepert completed his first degree at The University of Western Australia before undertaking a PhD at the Royal Institution of Great Britain, University of London. In 1995 he moved to the University of Oxford as a Junior Research Fellow, where he commenced research into molecular framework materials. He was appointed to the University of Sydney in 1999 and currently holds the position of ARC Federation Fellow. He is the recipient of the Malcolm McIntosh Prize for Physical Scientist of the Year, the AAS Le Févre Memorial Prize, the RSNSW Edgeworth David Medal, and the RACI Rennie Medal.

1166th General Monthly Meeting

"The oceans and climate change"

Professor Matthew England, Climate and Environmental Dynamics Laboratory, School of Mathematics, University of NSW

Wednesday 5 November 2008, 6.30 for 7 pm
Conference Room 1, Darlington Centre, City Road

ABSTRACT

The oceans have always played a fundamental role in moderating global climate by transporting an excess of heat from the tropics to the poles. This occurs via global scale stationery eddies and a massive overturning of dense water at high latitudes. The oceans are also currently moderating climate change by absorbing massive amounts of heat and carbon. In addition, ocean circulation variations can have a profound impact on regional climate. Yet as the world's climate changes the moderating effect of the oceans will be dramatically reduced. In this talk I will outline the ocean's role in global mean climate and future climate change.

Other research directly relating to the oceans around Australia and the waters circling the Antarctic will also be explored. Twentieth century climate change has forced a poleward contraction of the Southern Hemisphere (SH) subpolar westerly winds. The implications of this wind shift for the ocean's thermohaline circulation (THC) is analyzed in models and, where available, observations. Substantial heat content anomalies can be linked to changes in the latitude and strength of the SH westerly winds. For example, the Southern Annular Mode projects onto sea surface temperature in a coordinated annular manner - with a conspiring of dynamic and thermodynamic processes yielding a strong SST signal. Subantarctic Mode Water (SAMW) change can be linked to fluctuations in the wind-driven Ekman transport of cool, low salinity water across the Subantarctic Front. Anomalies in air-sea heat fluxes and ice meltwater rates, in contrast, drive variability in Antarctic Surface Water, which is subducted along Antarctic Intermediate Water (AAIW) density layers. SAMW variations also spike T-S variability in AAIW, particularly in the southeast Pacific and southeast Indian Oceans. The location of zero wind stress curl in the SH can also control the distribution of overturning in the North Pacific / North Atlantic. A southward wind shift can force a stronger Atlantic THC and enhanced stratification in the North Pacific, whereas a northward shift leads to a significantly reduced Atlantic THC and the development of vigorous sinking in the North Pacific. This is because the distribution of wind stress over the Southern Ocean influences the surface salinity contrast between the Pacific and Atlantic basins. The implications of these findings for oceanic climate change are discussed.

BIOGRAPHICAL NOTES

Professor Matthew England is an Australian Research Council Federation Fellow and the Director of the UNSW Climate Change Research Centre (CCRC). England is a former Fulbright Scholar and winner of the Royal Society of Victoria Research Medal for 2007, two Eureka Prizes (Environmental Research 2006 and Land and Water 2008), the 2005 Priestley Medal and the Australian Academy of Science Frederick White Prize for 2004. He coordinated and led the 2007 Bali Climate Declaration by Scientists: a major international statement by the scientific community that specifies the reductions in greenhouse gas emissions required to minimise the risk of dangerous human-induced climate change (www.climate.unsw.edu.au/bali). He was a contributing author and reviewer of the Intergovernmental Panel on Climate Change (IPCC) Second and Third Assessment Reports. He is an expert in the ocean's role in regional climate variability and global climate change.

1165th General Monthly Meeting

"Exploring the Milky Way: the past, present & future"

Dr Naomi McClure-Griffiths
CEO Science Leader at the CSIRO Australia Telescope National Facility (ATNF)

Wednesday 1 October 2008, 6.30 for 7 pm
Conference Room 1, Darlington Centre, City Road

ABSTRACT

Dr McClure-Griffiths took us on a walk around the Milky Way revealing what we know about the structure of the Galaxy and how gas in the Galaxy leads to its evolution. Her talk focused on our current work on the interstellar gas and magnetic field in the Milky Way and what it is telling us about the complex interstellar ecosystem of the Milky Way. She also discussed the world's next-generation radio telescope, the Square Kilometre Array (SKA), which will be one hundred times more powerful than any existing facility and which we hope to host in Australia. She concluded by discussing how the SKA will revolutionise our understanding of our home galaxy.

BIOGRAPHICAL NOTES

Dr Naomi McClure-Griffiths is a CEO Science Leader at the CSIRO Australia Telescope National Facility (ATNF), where she leads a research group with the aim of better understanding our own galaxy, the Milky Way. McClure-Griffiths has led two major surveys of the Milky Way including the Galactic All Sky-Survey, an on-going international project to produce an atlas of the hydrogen gas in the Milky Way. In 2006 she was the recipient of the Prime Minister's Malcolm McIntosh Prize for Physical Scientist of the Year for her discovery of a new spiral arm in the outer Milky Way.

1164th General Monthly Meeting

"Roles of telomeres and telomerase in human health and disease"

Dr Elizabeth H. Blackburn, Morris Herzstein Endowed Professor in Biology & Physiology, Department of Biochemistry & Biophysics, University of California

Wednesday 3 September 2008, 6.30 for 7 pm
Conference Room 1, Darlington Centre, City Road

ABSTRACT

Telomeres consist of simple DNA sequences, which bind cellular protein factors and make a 'cap', thus securing each end of every chromosome. Without telomeric DNA and its special way of replicating, chromosome ends dwindle away as their telomeric DNA erodes, eventually causing cells to stop dividing altogether. Telomerase, a specialized ribonucleprotein reverse transcriptase, is important for long-term eukaryotic cell proliferation and genomic stability, because it replenishes the DNA at telomeres. Thus, depending on cell type, telomerase partially or completely counteracts the progressive shortening of telomeres that otherwise occurs. Telomerase is over-active in many human malignancies, and a potential target for anti-cancer approaches.

Human telomerase activity is present not only in malignant cancer cells, but also in stem cells and germline tissues. Although telomerase activity is normally diminished in adult human somatic cells, throughout life a minimal level of telomerase is still required for replenishment of tissues, such as the immune system. In collaborative studies we showed that telomerase activity in peripheral blood mononuclear cells of the body is depressed by care-giving stress in a cohort of care-giver mothers: the longer the care-giving situation had lasted, and the higher the quantifiable level of perceived stress, the lower the telomerase, and the shorter the telomeres. Low telomerase levels in the normal white blood cells was associated with six prominent risk factors, including chronic psychological stress, for cardiovascular disease. Furthermore, a recent collaborative interventional, longitudinal clinical study was performed with early prostate cancer patients. We found that following a 3-month period of documented comprehensive health intervention, telomerase increased - within the healthy range - in normal white blood cells, in association with quantified improvements in cardiovascular disease risk factors and the patients' prostate cancer biopsy gene profiles. Implications of these and related findings for human disease progression and health will be discussed.

The speaker's presentation can be found here: Elizabeth Blackburn's Talk (~5 MB PDF).

BIOGRAPHICAL NOTES

Prof. Blackburn is a leader in the area of telomere and telomerase research. She discovered the molecular nature of telomeres - the ends of eukaryotic chromosomes that serve as protective caps essential for preserving the genetic information - and discovered the enzyme telomerase, which replenishes telomeres. Throughout her career, Blackburn has been honoured by her peers as the recipient of many prestigious awards, including The Albert Lasker Medical Research Award in Basic Medical Research (2006), and she is the 2008 North American Laureate for L'Oreal-UNESCO For Women in Science. In 2007 she was named one of TIME Magazine's 100 Most influential People.

Royal Society events

The Royal Society of NSW organizes a number of events in Sydney throughout the year.  These include Ordinary General Meetings (OGMs) held on the first Wednesday of the month (there is no meeting in January).  Society business is conducted, new Fellows and Members are inducted, and reports from Council are given to the membership.  This is followed by a talk and optional dinner.  Drinks are served before the meeting.  There is a small charge to attend the meeting and talk, and to cover refreshments.  The dinner is a separate charge, and must be booked in advance.  All OGMs are open to members of the public.

The first OGM in February has speakers drawn from the Royal Society Scholarship winners, and the December OGM hears from the winner of the Jak Kelly award, before an informal Christmas party.  The April or May event is our black-tie Annual Dinner and Distinguished Fellow lecture.

Other events are held in collaboration with other groups, including:

  • The Four Societies lecture (with the Australian Institute of Energy, the Nuclear Panel of Engineers Australia [Sydney Division] and the Australian Nuclear Association)
  • The Forum (with the Australian Academy of Technology and Engineering, the Australian Academy of Science, the Australian Academy of the Humanities and the Academy of the Social Sciences in Australia)
  • The Dirac lecture (with UNSW Australia and the Australian Institute of Physics)
  • The Liversidge Medal lecture (with the Royal Australian Chemical Institute)
Site by ezerus.com.au

Privacy policy  |  Links to other societies

All rights reserved; copyright © The Royal Society of NSW.