Events - The Royal Society of NSW - Royal Society of NSW News & Events - Page 9

Royal Society of NSW News & Events

Royal Society of NSW News & Events

1189th General Meeting

Lecture delivered for the Two Societies Meeting:
"Searching for nanosecond laser pulses from outer space"

Dr Ragbir Bhathal, University of Western Sydney

Tuesday 22 March 2011 at 6 pm

School of Physics, University of Sydney

Meeting report by Dr Frederick Osman 

On Tuesday 22 March 2011, the Australian Institute of Physics and the Royal Society of New South Wales held their annual Two Societies meeting at the University of Sydney and featured Dr Ragbir Bhathal on his topic of searching for very fast light flashes.

 Dr Bhathal opened his talk by saying that we should be searching for nanosecond laser pulse from ETI. He believes that ETI would have surpassed the microwave threshold and gone on to use laser pulses for intergalactic communications. A nanosecond laser pulse has several advantages, he said. Apart from its directivity, a 1015 W or more nanosecond laser pulse would outshine its star by four to seven orders of magnitude. This pulse could thus be easily detected by present day optical telescopes equipped with fast-response PMTs or APDs. Because the telescopes are being used as photon buckets they need not be highly sophisticated. The fact that the National Ignition Facility in the US has been able to generate 1015 W laser pulses although for a few nanoseconds lends credibility to the use of lasers as communication devices by ETI civilisations. The optical search strategy has been used in a dedicated mode only for the last ten years. Four groups, three in United States (Harvard University/Princeton University, University of California and the SETI Institute) and one in Australia (OZ OSETI Project at the University of Western Sydney) have led the charge for the optical search strategy. 

Dr Bhathal's optical search is the longest dedicated optical search in the Southern Hemisphere. Last year a group of Japanese scientists and engineers also joined the optical and microwave searches. However, to date no positive signals in the optical spectrum have been received. Although a laser look alike signal was detected in 2008 by Dr Bhathal emanating from the globular cluster 47 Tucanae it was dismissed after a six month search in the same region failed to detect the signal again. Considered as the father of SETI in Australia, Dr Bhathal hopes to continue the optical search with a new dedicated one-metre telescope which is on the drawing boards at the moment. Dr Bhathal also discussed the latest developments in the microwave search strategy which clocked 50 years last year and other programs which are underway for searching for life in the universe, such as searching for glycine, searching for earth like planets by extra-solar planet scientists and the Kepler mission, the Mars explorations and meteorites. 

Dr Bhathal ended his lecture by quoting from the great 19th century mathematician and physicist Karl Gauss who said that the detection of a signal from ETI "would be greater than the discovery of America". The Australian Institute of Physics and the Royal Society of New South Wales thank Dr Ragbir Bhathal for his outstanding lecture!

1188th General Meeting

Lecture delivered for the Four Societies Meeting:
"Geothermal energy - current state of play and developments"

Dr Stuart McDonnell, Geodynamics Ltd

Mr Stephen de Belle, Granite Power Ltd

Thursday 24 February 2011 at 6 pm

Hamilton Room, Trade & Investment Centre, Industry & Investment NSW, Level 47, MLC Centre, 19 Martin Place, Sydney

Meeting report by Donald Hector 

The annual meeting of the "Four Societies" - the Royal Society of NSW, the Australian Nuclear Association, the Nuclear Engineering Panel of Engineers Australia (Sydney Division), and the Australian Institute of Energy - heard two perspectives on geothermal energy as a major energy source for the generation of electric power. The speakers were Dr Stuart McDonnell, chief operating officer of Geodynamics Ltd and Stephen de Belle, managing director of Granite Power Ltd. Both companies are developing 'hot rocks' technology for the generation of electricity. The technological concept behind this technology is straightforward enough: a source of hot rock, typically granite at temperatures of 150-300 °C at depths between 1500 m and 5000 m below the Earth's surface, is identified. The rock is fractured and water is pumped under high pressure from the surface down through the hot rock where it is heated to very high temperatures. When the water returns to the surface, the energy is used to drive turbines which in turn generate electricity. The thermal resources in Australia are huge­- in the Cooper Basin alone, there are hot rock deposits capable of generating as much electricity as burning 750 million tonnes of coal or 16 trillion cubic feet of natural gas. 

Of course, the devil is in the detail. It is technologically challenging and expensive to drill to these depths. In addition, there are other significant technological challenges that need to be resolved such as fluid chemistry when the hot water reacts with the minerals in the rock and the components in the system, the ability to manage multiple fracture-zones in order to extract the maximum amount of heat, the gradual reduction of the temperature of the resource over time, and the challenges in creating viable, efficient heat exchanger designs in rock several kilometres beneath the Earth's surface. 

If these technological and economic issues can be overcome, geothermal generation is well placed to provide a substantial proportion of Australia's baseload electricity demand. This could be as high as 2,300 MW of base-load capacity by 2020. Some government and private funding has already been committed with the intention to seek further capital from institutional investors during 2011.

Annual Dinner and Awards 2011

The Society held its Annual Dinner for 2011 at St Paul's College, University of Sydney on Friday 18 February 2011. Our guest-of-honour was the Governor of NSW, Her Excellency Professor Marie Bashir AC CVO, one of our two Patrons and a long-standing supporter of the Society. We were also pleased to have three Deans of Science from universities in Sydney present. In her Occasional Address Her Excellency made reference to the antecedents of the Society and the work of one of her predecessors, Governor Lachlan Macquarie, in creating a climate in which Societies such as ours might germinate. We appreciate her support and that of the unbroken line of her predecessors.
The Governor, Marie Bashir, presents Fellowship to Professor Michelle Simmons.
The Governor, Marie Bashir, presents Fellowship to Emeritus Scientia Professor Eugenie Lumbers.
The Governor, Marie Bashir, congratulates Dr Ken Campbell on his award of the Clarke Medal.​
The Governor, Marie Bashir, presents Assoc. Prof. Angela Moles with the Edgeworth David Medal.​
The Governor, Marie Bashir, presents Prof. Rick Shine with the Walter Burfitt Prize.​
The Governor, Marie Bashir, presents Dr Julian King with the joint AIP/Royal Society of NSW Studentship Award.​
The Governor, Marie Bashir, with Society President John Hardie after he presented her with a token of the Society's appreciation.​
Vice President, Heinrich Hora, gives the vote of thanks.​

2011 Sydney Lecture Series

​Thursday
24th February

​The Four Societies Lecture. Hosted by Australian Nuclear Association, Nuclear Panel of
Engineers Australia, Australian Institute of Energy and The Royal Society of NSW
1188th Ordinary General Meeting

Geothermal Energy - Current State of Play and Developments

Dr Stuart Mc Donnell, Chief Operating Officer for Geodynamics and
Mr Stephen de Belle of Granite Power.

Venue: Hamilton Room, Trade & Investment Centre, Industry & Investment NSW,
Level 47, MLC Centre, 19 Martin Place, Sydney. Time: 5.30pm for 6.00pm
​Tuesday
22nd March

​The Two Societies Meeting - Australian Institute of Physics and Royal Society of NSW.

1189th Ordinary General Meeting

Searching for Nanosecond Laser Pulses from Outer Space
Dr Ragbir Bhathal


Venue: Slade Lecture, Theatre, School of Physics, University of Sydney.
​Wednesday
6th April

1190th Ordinary General Meeting & 144th AGM

Belief and Science: the Belief/Knowledge Dilemma

Join David Malouf and Barry Jones discuss the Belief/Knowledge Dilemma.​
​Friday
29th April

​Dirac Lecture 2011

Beauty and truth: their intersection in mathematics
and science


Lord May of Oxford.

Presented in conjunction with the University of New South Wales.

View the 2011 Dirac Lecture

​Wednesday
4th May

​1191st Ordinary General Meeting

Heading Towards the World's Largest Telescope: The Square Kilometre Array

Professor Michael Burton, School of Physics, University of New South Wales
​Wednesday
1st June

1192nd Ordinary General Meeting

Variation of Fundamental Constants from Big Bang to Atomic Clocks

Professor Victor Flambaum, School of Physics, University of New South Wales​
​Wednesday
6th July

​1193rd Ordinary General Meeting

Stem Cells and Regenerative Medicine: Prospects for Realising the Prometheus Myth


Professor John Rasko, Centenary Institute, University of Sydney and RPA Hospital

6.30 pm at the New Law Building, University of Sydney
​Wednesday
3rd August

​1194th Ordinary General Meeting

Schizophrenia: from Neuropathology to New Treatments


Professor Cyndi Shannon Weickert, Macquarie Group Foundation Chair of Schizophrenia Research,

NeuRA, SRI and UNSW, and Professor, School of
Psychiatry, UNSW

6.00 for 6.30 pm at the New Law Seminar Room 102, New Law Building, University of Sydney
Wednesday
7th September



​1195th Ordinary General Meeting

Distributed Small-Scale Production of Chemicals - Why and How

Professor Brian Haynes, Sydney University

6.00 for 6.30 pm at the New Law Seminar Room 102, New Law Building, University of Sydney
​Wednesday
5th October

​1196th Ordinary General Meeting

Sex in the Sea: How Understanding the Weird and Bizarre Sex Lives of Fishes is the First Step to their Conservation

Prof. William Gladstone, University of Technology, Sydney

6.00 for 6.30 pm at the New Law Seminar Room 102, New Law Building, University of Sydney
​Wednesday
2nd November

​1197th Ordinary General Meeting

Grid-Connected Energy Storage: the Key to Sustainable Energy?

Professor Tony Vassallo, Sydney University

6.00 for 6.30 pm at the New Law Seminar Room 102, New Law Building, University of Sydney
​Wednesday
7th December

​1198th Ordinary General Meeting

Studentship Awards and Christmas Party

6.00 for 6.30 pm at St Pauls College, University of Sydney
​Tuesday
13th December


​Clarke Memorial Lecture
with a cocktail reception following.

5.30 pm at Eastern Avenue Auditorium, Eastern Avenue, University of Sydney.

2010 Liversidge Lecture in Chemistry

"Belief in science"

Professor John White CMG FAA FRS, Australian National University

Friday 26 November 2010 at 5.30 pm

Lecture Theatre 1, Merewether Building, University of Sydney

The achievements of science in the last 400 years have been of great benefit to humanity and are appreciated widely. Less well understood is how personal attributes of awareness, excitement, frustration and recognition of beauty are central to successful science. These very human qualities play a role in making discoveries. Scientists' optimism, suspended disbelief, and a reliance on empiricism are as much part of the scientific method as clear logic. Science requires absolute honesty and care about conclusions to be believable. Science is not autonomous and the sometimes necessarily tentative opinions are often incomprehensible and even unacceptable to the public – we must do better in explaining! Professor White's lecture will also examine some of his recent work on the structure and function of industrially valuable explosive emulsions – understood by the novel neutron scattering methods of 'contrast variation' pioneered in his research.

John White is currently Professor of Physical and Theoretical Chemistry at the Research School of Chemistry at the Australian National University. Graduating from Sydney University, he went to Oxford University on an 1851 scholarship in 1959. He became a Research Fellow of Lincoln College before finishing his DPhil and an official Fellow of St John's College Oxford in 1963. He is one of the discoverers of isotopic contrast variation in neutron scattering – which is currently used worldwide for understanding the structure of "soft matter".

1186th General Meeting

"Powering the US grid from solar and wind"

Dr David Mills, co-founder of Ausra, Inc.

Wednesday 3 November 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

Solar and wind are our two largest energy resources and are well distributed globally. In these respects, they are ideal to re-power humanity with little climate or political impact. Some say that such a strategy is not practical because the solar resource disappears at night and each wind generator can be highly variable in output. However, the impact of already commercially available solar thermal storage technology, together with the overlap effects of wind energy from many sites may prove otherwise.

The first example used is the USA 2006 electrical load calculated on an hourly basis from government data and the second is a total energy supply scenario. A high voltage DC grid backbone (commercially available today) is assumed to allow full access of delivered power to all parts of the country. National wind and solar output are calculated hourly using government resource data. The initial results of the analysis are presented together with a discussion of the roles of solar and wind in such a new system, in comparison to conventional baseload/peaking thinking.

The talk will begin with an update of Dr Mills' company's activities in the United States since his leaving Sydney in early 2007, followed by an update of today's solar technology. The main part of the talk describes private work in progress by the author and his colleagues in the United States to take a first look at the feasibility of powering the United States energy system entirely from wind and sun by mid-century.

Dr Mills is the former Head of the Solar Energy Group at the University of Sydney and past President of the International Solar Energy Society. He is the co-founder and former chairman of the SHP and Ausra companies.

1185th General Meeting

"Is the climate right for nuclear power?"

Dr Ziggy Switkowski, Chair of the Australian Nuclear Science and Technology Organization

Wednesday 6 October 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

The world is experiencing a strong warming trend believed to be driven by greenhouse gas emissions associated with the burning of fossil fuels for energy production. Australia's demand for electricity, and energy in general, is expected to double by 2050. The challenge is to moderate and meet this growing demand in an environmentally responsible way. Nuclear power is already widely used around the world and the debate for its deployment in Australia is well under way.

This presentation will review the nuclear fuel cycle in the context of low emission energy technology and point to the potential role of nuclear power in Australia's energy and climate change strategy.

Dr Ziggy Switkowski is the Chair of the Australian Nuclear Science and Technology Organization. He is also a non-executive director of Suncorp, Tabcorp and Healthscope, and Chair of Opera Australia. He is a former chief executive of Telstra, Optus and Kodak (Australia).

In 2006 he chaired the Prime Minister's Review of Uranium Mining, Processing and Nuclear Energy which returned nuclear power to the country's strategic debate. He has a PhD in nuclear physics from the University of Melbourne and is a Fellow of the Australian Academy of Technological Sciences and Engineering.

1184th General Meeting

"Long-term changes in solar activity – including the current Grand Minimum"

Ken McCracken, Jellore Technologies and Senior Research Associate, University of Maryland

Wednesday 1 September 2010 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

The sunspot record since Galileo's time, and the cosmogenic nuclides 10Be (in ice cores) and 14C (in tree rings) show that the degree of activity of the Sun has varied greatly over time. The solar activity, manifested by the occurrence of sunspots, solar flares, and coronal mass ejections may be quite high, as it has been since 1946; and was during Roman times, or very small as during the Maunder Minimum (1645-1715); the Dalton Minimum (1810-20) or the Gleissberg Minimum of 1900-10. In the first part of the lecture, the speaker will discuss his recent studies with Swiss colleagues of the last 10,000 years of 10Be data from the Arctic and Antarctic that shows that the Sun has exhibited a number of persistent periodicities in solar activity, the most important being of duration 2300yr, 210yr, ~85yr, and the well known 11/22 year solar cycle. He will also outline the last 30 years of satellite data that show that the solar irradiance varies by ~0.1% over the 11 year solar cycle.

Against that background, he will then describe the substantial reduction in solar activity that commenced in 2006. Since then, the sunspot behaviour has been similar to that during the Dalton minimum (1810-20). The interplanetary magnetic fields have been lower than at any time during the space age, and the cosmic radiation intensities are well above those at any time during the past 60 years. The solar irradiance has decreased well below that observed in the previous 30 years. The evidence indicates that the magnetic properties of the Sun are now very different from those at any time in the "Space Age". Based on the 10,000 year 10Be record, he will speculate that the Sun will remain relatively inactive (and cool) for the next 20 years, and it will then resume a steadily increasing state of activity until it reaches a peak of the Hallstatt (2300 year) cycle ~200 years in the future.

Ken McCracken has had a long and varied life as a scientist, technologist, and contrarian. Starting his research career in Tasmania and New Guinea in the 1950s, he was then deeply involved in the early days of the US space program for seven years while at the Massachusetts Institute of Technology and the University of Texas. He designed and built scientific instruments that were flown on seven spacecraft that went to the orbits of Mars and Venus in the 1960s to provide the information needed to protect the US astronauts from being killed, or losing their virility, en route to the Moon. Following a professorship at the University of Adelaide, CSIRO appointed him to inaugurate a new research laboratory to improve geophysical exploration for minerals in the harsh Australian environment. Moving to the Southern Highlands in 1989, he operated a consultancy providing scientific advice to the mining industry. Over the past decade he and his Swiss, US, and Australian colleagues have used results from ice cores from Greenland and Antarctica to understand how the Sun has waxed and waned in activity over the past 10,000 years, and how this has paralleled the twenty two little ice ages, and many warming periods in the Earth's climate over the past 10,000 years. With his wife Gillian, he owns and operates the 850 acre beef breeding property "Jellore" in High Range.

1183rd General Meeting

"The dynamic brain: modeling sleep, wake, and activity in the working brain"

Professor Peter Robinson, University of Sydney

Wednesday 4 August 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

The brain's activity varies around the clock in response to stimuli, light inputs, and the buildup and clearance of sleep-promoting chemicals - somnogens. Signatures of brain activity have been observed for over a century and are widely used to probe brain function and disorders, often via the electroencephalogram (EEG) recorded by electrodes on the scalp, or through functional magnetic resonance imaging (fMRI), which measures a combination of blood volume and deoxygenation. Here, a quantitative physiologically based model of the working brain is described that responds correctly to the day-night cycle, somnogens, caffeine and pharmaceuticals, and generates activity in the cortex consistent with brain imaging measurements. Successful applications to numerous experiments are described, including EEGs, seizures, sleep deprivation and recovery, fatigue, and shift work. Aside from its scientific uses, this working brain model is currently finding clinical and industrial applications to brain function measurement and to prediction and monitoring of alertness.

Peter Robinson received his PhD in theoretical physics from the University of Sydney in 1987, then held a postdoc at the University of Colorado at Boulder until 1990. He then returned to Australia, joining the permanent staff of the School of Physics at the University of Sydney in 1994, and obtaining a chair in 2000. He is currently an Australian Research Council Federation Fellow working on topics including sleep, brain dynamics, space physics, plasma theory, and wave dynamics.

1182nd General Meeting

"Pluto and the uber-nerds"

Fred Watson, Anglo-Australian Observatory at Coonabarabran

Wednesday 7 July 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

When is a planet not a planet? When it's a dwarf-planet, perhaps? So what's the difference? In 2006, astronomy's governing body, the International Astronomical Union, wrestled with this very question at their General Assembly in Prague. Before we knew it, media all around the world had declared that Pluto had been "dumped" from its status as the ninth planet, hinting that it had been unfairly thrown out of the Solar System. And in 2008 things got worse, with Pluto joining the lowly ranks of a new class of objects with the unflattering name of Plutoids. In this entertaining and fully illustrated journey through Pluto's eventful history, Fred Watson debates whether pragmatism and good science should prevail over sentiment and tradition.

Fred Watson says he has spent so many years working in large telescope domes that he has started to look like one. He is Astronomer in Charge of the Anglo-Australian Observatory at Coonabarabran, where his main scientific interest is gathering information on very large numbers of stars and galaxies. He is also an adjunct professor at the Queensland University of Technology, the University of Southern Queensland, and James Cook University. Fred is the author of "Stargazer: The Life and Times of the Telescope", and is a regular broadcaster on ABC radio. His new book "Why is Uranus upside down?" is based on listener questions, and was published in October 2007 and won the 2008 Queensland Premier's Literary Prize for Science Writing. In 2003, Fred received the David Allen Prize for communicating astronomy to the public, and in 2006 was the winner of the Australian Government Eureka Prize for Promoting Understanding of Science. Fred has an asteroid named after him (5691 Fredwatson), but says that if it hits the Earth it won't be his fault ...

1181st General Meeting

"Science for gentlemen - the Royal Society of New South Wales in the nineteenth century"

Peter J. Tyler, Historian for the Royal Society of New South Wales

Wednesday 2 June 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

Scientific activity in New South Wales began when James Cook and Joseph Banks voyaged along the eastern coast in 1770. This was the Age of Reason, when educated men challenged traditional knowledge handed down from antiquity and the Bible. Curiosity about natural history had become a fashionable pursuit when the penal settlement at Sydney Cove was established in 1788. Settlers and colonial officials collected and classified the animal, vegetable and mineral constituents of their unfamiliar environment. Even some of the convicts found a profitable sideline collecting shells, birds, plants, and aboriginal artefacts for sale to visiting ships' captains, who in turn sold them for high prices to wealthy collectors in Britain and the Continent.

In June 1821, towards the end of Lachlan Macquarie's term as Governor, seven men formed the grandly named Philosophical Society of Australasia "with a view to inquiring into the various branches of physical science of this vast continent and its adjacent regions." Although it only survived for a little over a year, this was a predecessor of the present Royal Society of New South Wales.

During the nineteenth century the Royal Society and its three antecedents functioned as an exclusive club for men "of honourable reputations" interested in the natural sciences. Almost without exception the members were pastoralists, merchants, or professionals such as clergymen, lawyers or medical practitioners. They classed themselves as gentlemen, because they were not engaged in physical labour. Only a handful were what we would now call scientists, because separate disciplines were only beginning to emerge, and career opportunities were few.

This does not mean that science was merely a hobby, or a part-time diversion. Members read the latest overseas journals diligently, they collected specimens and published papers - often descriptive rather than analytical - and they engaged in vigorous discourse on many of the contentious issues of the period, including Darwin's theories of species evolution at a time when such views were deeply unpopular in Australia. A few conducted original research in fields such as astronomy, geology and aeronautics.

Members of the Royal Society were part of the colonial conservative establishment. Women were excluded, while rigorous admission procedures ensured that "working men" did not become members. Nevertheless, the Royal Society recognised the need to educate or inform the broader public about the achievements of science, and organised regular gatherings for that purpose. It would be easy to characterise the members as typical class-conscious paternalists of the Victorian era, but there were always a few dissenters who did not fit that model.

In the twentieth century more inclusive attitudes emerged gradually, reflecting the changes in the wider community. Today it is difficult to discern any remnants of the earlier caste system. A question we might ponder is - has the influence and public profile of the Royal Society diminished at the same time?

Peter J. Tyler is the Historian for the Royal Society of New South Wales. In 2008-2009 he was the inaugural Merewether Research Scholar at the Mitchell Library. Peter has a BA degree in geography and a Master's degree in history from the University of New England. His PhD thesis from that institution examined the role of the Board of Health in public health administration in NSW from 1881-1973. He also holds a Graduate Diploma in Adult Education from UTS. Previously he worked in management positions in the public, private, and not-for-profit sectors, including fifteen years as Secretary and chief executive of the Workers' Educational Association in Sydney. His published books range over such diverse fields as health care, the building industry, and the public service. Peter Tyler has been President of the NSW Branch of the Australian and New Zealand Society of the History of Medicine, and of the Professional Historians Association (NSW).

Report on the General Meeting

by Donald Hector

The middle of the 19th century was a time of great change in NSW. Responsible government was introduced in 1856 and full manhood suffrage followed two years later. Queensland separated from NSW a year after that. And just 10 years after the introduction of responsible government, Queen Victoria granted Royal Assent to the title of The Royal Society of New South Wales. However, as Dr Peter Tyler, the Society's Historian, explained in his lecture at the 1181st ordinary general meeting on 2 June 2010, The Royal Society of NSW traces its origins back to 1821 when The Philosophical Society of Australasia was formed. There were several early attempts to form such societies with mixed success but this should not understate the commitment of a group of progressives who wanted to see the natural history, agriculture, and culture of the nascent colony flourish.

The Philosophical Society of Australasia was established under patronage of the Governor, Sir Thomas Brisbane and he also became its first President. The founding members included Major Goulburn (the Colonial Secretary) and Edward Wollstonecraft a wealthy merchant and landowner at North Sydney. The purpose was to study the physical sciences and the mineralogy of NSW (which then, of course, included what is now Queensland and Victoria). The early Society only lasted a year or so but there were other attempts to stimulate more intellectual activities in the colony in the first part of the 19th century. The first subscription library was started by Wollstonecraft in 1826 and between 1820 and 1850 other societies began, such as the Agricultural Society (which lapsed for some years and then was re-established in the 1850s), The Australian Society for the Encouragement of Arts, Science, Commerce, and Agriculture (more commonly referred to as the Australian Philosophical Society) but, like the early Philosophical Society, these early groups generally did not thrive.

But by the 1860s, with Sydney having been formally declared a city (in 1842), NSW having been granted responsible government, and the buoyant economic growth of the period created an environment where interest in science, art, and literature blossomed. The University of Sydney was founded in 1854 and the time was right for a successful society to be established.

Just six years after the granting of Queen Victoria's Royal Assent there were 122 members of the Society across a range of occupations - pastoralists, businessman, scientists, artists, lawyers, and the clergy - and by the 1890s there were nearly 500 members. In the latter half of the 19th century a number of eminent scientists (Prof John Smith (physics and medicine), Prof Archibald Liversidge (geology and chemistry), Sir Thomas Anderson Stuart (physiology) were but a few). The Society's transactions were published in a prestigious peer-reviewed journal (which continues today) and attracted publications from such eminent scientists and engineers as Lawrence Hargrave.

The first 80 years of the Society were colourful, strongly influenced by the personalities of the time when NSW was finding its feet as a society. Dr Tyler's work was made possible through his appointment as the inaugural Merewether Scholar of the State Library of NSW.

1180th General Meeting

"The weird world of nanoscale gold"

Mike Cortie, Director of the Institute for Nanoscale Technology, University of Technology, Sydney

Wednesday 5 May 2010 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

The field of `nanotechnology' has captured the imaginations of many. There are many new journals dedicated to the subject and the entertainment media have featured it in several recent movies and books. But what is `nanotechnology', and is it actually a new thing? Some people have described much of current nanotechnology as just old things in new clothes. I will show that while the study and exploitation of matter at the nanoscale is old news, there really is something quite startlingly different about the new field of `nanotechnology'. Real nanotechnology is the most reductionist form of science and technology imaginable. In the real thing, the basic paradigm is to define a desired technological functionality, and then to work backwards atom by atom to design a system to achieve that effect.

Some materials, such as silicon, carbon, DNA, titanium dioxide and gold have become very prominent within the nanotech arena. This has not been the result of some arbitrary choices, rather these particular materials offer uniquely attractive engineering properties that specifically commend their selection for nanoscale systems and devices. Gold is particularly interesting to myself and my colleagues, and much of our research targets or uses this element. The reason gold is popular in nanoscale research and technology is that it offers an unrivalled combination of material properties for applications requiring a conductor. But what can you do with it? In my talk I will show first, how things become a bit weird with gold as the size scale is shrunk to nano-dimensions, and then I will describe some of the many useful devices that can be fabricated by exploiting these properties. Some of the interesting existing and prospective applications for gold at the nanoscale include bio-diagnostics, biosensors, solar filters, optical filters, colorants and pigments, single electron devices, new kinds of digital memory, and plasmonic circuitry. But it is a fast-moving field and who knows what new ideas will pop up in the next couple of years.

Mike Cortie is the Director of the Institute for Nanoscale Technology at the University of Technology, Sydney (UTS), in Australia. He was born and educated in South Africa. He has a BSc(Eng) degree in Physical Metallurgy, a Masters degree earned from research on the corrosion of zirconium and a PhD degree, which was focused on metal fatigue and awarded in 1987. After a stint at South Africa's Atomic Energy Corporation and at Pylon Engineering, a gear-cutting works, Mike joined Mintek, a minerals and metals research organisation. Mike headed the Physical Metallurgy Division of Mintek between 1997 and 2002. The Division consults widely to South African and international industry and now generates the major portion of its funds from foreign contract research. He relocated to Australia and joined UTS in July 2

Mike's current research interest is nanotechnology, and in particular the applications of precious metals in nanotechnology. Previous research activities included research on ferritic and nickel-substituted stainless steels, on intermetallic compounds with the C1 (CF12) and B2/L21 crystal structures, on X-ray diffraction and crystallographic texture of bcc and fcc alloys, on cellular automata and the simulation of metal solidification, cracking and solid state transformations, on explosive interactions between molten metal and water, on displacive transformations in Pt-containing alloys and compounds, on the phase relationships in the Al-Au-Cu ternary system, and on the crystal structures of the martensite phase formed by displacive phase transformation in the b Au-Al-Cu shape memory alloy. He has also been active outside the materials arena, and has made contributions to the mathematical modelling and graphics rendering of mollusc shells, and the science education of children.

2010 Sydney Lecture Series

​Wednesday
17th February

​The Four Societies Lecture. Hosted by Australian Nuclear Association, Nuclear Panel of Engineers Australia, Australian Institute of Energy and The Royal Society of NSW

1178th Ordinary General Meeting

An Industry Update on Global Nuclear Power and the Opportunities for Australia

Dr Selena Ng, Areva NC, Australia

Venue: Engineers Australia Lecture Theatre, 8 Thomas St, Chatswood

Time: 5.30pm for 6.00pm
​Friday
12th March

​1179th Ordinary General Meeting & 143rd AGM with the Anniversary Address

Annual Dinner and Presentation of Awards for 2009

John Hardie, President of the Royal Society of NSW 2007-2010
​Wednesday
7th April

Science and Scientists in the Modern World

Professor Jill Trewhella, University of Sydney
Wednesday
5th May

1180th Ordinary General Meeting

The Weird World of Nanoscale Gold

A/Professor Mike Cortie​
Wednesday
2nd June

​1181st Ordinary General Meeting

Science for Gentlemen - The Royal Society of NSW in the Nineteenth Century

Dr Peter Tyler, Historian for the RSNSW
​Wednesday
7th July

​1182nd Ordinary General Meeting

Pluto and the Ueber-nerds

Dr Fred Watson, Anglo Australian Observatory
​Wednesday
4th August

​1183rd Ordinary General Meeting

The Dynamic Brain: Modelling Sleep, Wake, and Activity in the Working Brain


Professor Peter Robinson, University of Sydney
​Wednesday
1st September

​1184th Ordinary General Meeting

Long-term Changes in Solar Activity - Including the Current "Grand Minimum"

Dr Ken McCracken, Senior Research Associate, University of Maryland
​Wednesday
6th October

​1185th Ordinary General Meeting

Is the Climate Right for Nuclear Power?

Dr Ziggy Switkowski, ANSTO
​Wednesday
3rd November

​1186th Ordinary General Meeting

Powering the US Grid from Solar and Wind

Dr David Mills, Chief Scientific Officer and Founder of Ausra, Inc.
​Friday
26th November

1187th Ordinary General Meeting

2010 Liversidge Lecture in Chemistry

Professor John White CMG FAA FRS, Australian National University​
​December

​Studentship recipients

1176th Ordinary General Meeting

"The real significance of hobbits: hominid biogeography in South East Asia"

Professor Michael J. Morwood, Professor in Archaeology, School of Earth and Environmental Studies, University of Wollongong

Wednesday 4 November 2009 at 7 pm

Conference Room 1, Darlington Centre, University of Sydney

In 2004 Professor Mike Morwood led the team that found the skeleton of a previously undiscovered human species on the island of Flores. The 'hobbit' skeleton was of a much smaller stature than present-day humans, being that of an adult who was only one metre in height. Evidence suggests that these 'hobbits' may have lived from 95,000 to 13,000 years ago and were probably descendants of the Homo erectus population that had evolved in isolation on Flores. It is believed that the 'hobbit' may have still been in existence when the 16th century Dutch traders arrived at the island. This discovery has raised questions about the nature of human of evolution.

The discovery of an endemic species of human on Flores was unexpected, but no more so than finding evidence of Homins on the islands from 880,000 years ago. This lecture will explain why the 2004 discovery was not wholly unexpected with reference to the faunal biogeography of South East Asia. It will conclude with some of the implications for early hominin and modern human dispersal mechanisms, and for the future archaeological research in the region.

The speaker's presentation can be found here: Mike Morwood's Talk (5 MB PDF).

Professor Michael Morwood has carried out extensive research in New Zealand and throughout Queensland, New South Wales and the Northern Territory, both as an academic researcher and as a public archaeologist. He is particularly interested in ethnohistory, material culture studies and the social-ceremonial role of art in Aboriginal Culture.

In 2007, Professor Morwood and Penny Van Oosterzee won the John Mulvaney Book Award for the publication of "The Discovery of the Hobbit: The Scientific Breakthrough that Changed the Face of Human History" documenting his work on the Indonesian island of Flores. In addition to his work in Indonesia, he is an expert in Australian Aboriginal rock art and the author of "Visions from the Past: The Archaeology of Australian Aboriginal Art".

The 2009 Clarke Memorial Lecture

"Climate change through the lens of the geological record: the example of sea level"

Professor Kurt Lambeck, AO FAA FRS
Distinguished Professor of Geophysics, Australian National University
President of the Australian Academy of Science

Friday 30 October 2009 at 5.30 pm
Eastern Avenue Auditorium, University of Sydney

The 2009 Clarke Memorial Lecture is presented in conjunction with The University of Sydney and The Geological Society of Australia

Climate change has been with the planet since the time of the formation of the oceans and atmosphere and is recorded, albeit imperfectly, in the geological record. One of these records is the change in sea level through time, a complex variable that contains implicit information not only on climate but also on the tectonic and geological evolution of the planet. He will address aspects of the underpinning science and what we can learn from it, focussing on the best-known part of the record, that for the last glacial cycle.

The modern instrumental record is much more precise and has higher resolution but will also contain in addition to the 'natural' variability any new signals that may result from human impact on climate. The challenge is to separate these 'natural' and 'anthropogenic' forcings if forecasts of future change are to be meaningful.

The problems encountered are similar to all other indicators of climate change – of separating natural and human forcing from instrumental and geological or historical records when the length of the latter are about the same as the time that human impacts may have been effective.

Professor Lambeck will use the sea level record as an illustration of many of the issues that need to be understood for a meaningful interpretation of the evidence. In so doing he will raise the role of the IPCC and where the IPCC findings are tracking in 2009; and how the public debate on climate change appears to be becoming increasingly confused while the underpinning science is becoming more robust.

The speaker's presentation can be found here: Kurt Lambeck's Clarke Lecture (2.9 MB PDF).

Professor Lambeck's research interests range through the disciplines of geophysics, geodesy and geology with a focus on the deformations of the Earth on intermediate and long time scales and on the interactions between surface processes and the solid earth.

Past research areas have included the determination of the Earth's gravity field from satellite tracking data, the tidal deformations and rotational motion of the Earth, the evolution of the Earth-Moon orbital system, and lithospheric and crustal deformation processes. His recent research work has focused on aspects of sea level change and the history of the Earth's ice sheets during past glacial cycles, including field and laboratory work and numerical modelling.


Professor Lambeck has been at the Australian National University since 1977, including ten years as Director of the Research School of Earth Sciences. Before that he was at the University of Paris and the French Space Agency (1970-1977), and at the Harvard-Smithsonian observatory (1967-1970). His doctorate is from Oxford (1967) and his first degree from the University of New South Wales (1963). He was elected to the Australian Academy of Science in 1984 and became its President in 2006.

He is a Fellow of the Royal Society (1994), and a foreign member of the Royal Netherlands Academy of Arts and Sciences (1993), the Norwegian Academy of Science and Letters (1994), Academia Europaea (1999), the Académie des Sciences, Institut de France (2005), and the US National Academy of Sciences (2009)

1175th Ordinary General Meeting

"The SKAMP project - a telescope reborn to look back in time"

Professor Anne Green
Head, School of Physics, University of Sydney

Wednesday 7 October 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

For more than 40 years the University of Sydney has operated the Molonglo Observatory. Recently, the Molonglo Observatory Synthesis Telescope completed a detailed imaging survey of the southern sky at a frequency of 843 MHz. What next? We are undertaking a complete renewal of the signal pathway as part of Australia's contribution to the Square Kilometre Array (SKA) project, a powerful new radio telescope. Our project is the SKA Molonglo Prototype (SKAMP), which will be a new low frequency spectrometer with wide-field imaging and polarization capability. This talk will describe the project and how it builds on the previous telescope and its science achievements. Two of the key science goals to be undertaken initially will be a survey of red-shifted neutral hydrogen gas and a study of the transient radio sky. With the subsequent polarization capability, we will map the magnetic field structure of our Galaxy and explore cosmic magnetism.

The speaker's presentation can be found here: Anne Green's Talk (3.6 MB PDF).

Professor Anne Green is a radio astronomer whose main research focus is the study of the structure and ecology of our Milky Way Galaxy with particular interest in supernova remnants, the relics of exploded stars. She was Director of the Molonglo Observatory for ten years and is now Head of the School of Physics and Director of the Science Foundation for Physics within the University of Sydney, the first woman to hold these positions. Professor Green is a graduate of both Melbourne and Sydney Universities and was the first female PhD graduate in the School of Physics at the University of Sydney. She held an Alexander von Humboldt Postdoctoral Research Fellowship at the Max-Planck-Institut for Radioastronomie in Bonn, Germany, before retiring from academia to travel Europe, live in Belgium and Switzerland and have two children. After a return to Sydney and fifteen years away from astronomy, she resumed her research career. She is now leader of the SKA Molonglo Prototype (SKAMP) project, which is prototyping technology and undertaking science projects as a forerunner to an amazing new telescope for the future called the Square Kilometre Array. Professor Green is also the Chair of the International Astronomical Union Working Group whose goal is to improve the status of women in astronomy.

1174th Ordinary General Meeting

"Weird animal genomes and sex"

Professor Jenny Graves, Head, Comparative Genomics Research Group, Australian National University
Director, ARC Centre of Excellence for Kangaroo Genomics
Professorial Fellow, Department of Zoology, University of Melbourne

Wednesday 2 September 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Whether a baby develops as a boy or girl depends on a single gene on the Y chromosome. In humans and other mammals, females have two X chromosomes, but males have a single X and a Y that bears the testis-determining gene (SRY) that induces testis differentiation and switches on hormones that masculinize the embryo. The human X is a middle-sized, ordinary chromosome, though it is rich in genes involved in reproduction and intelligence (often both). But the tiny Y is a genetic wasteland – full of genetic junk and bearing only 45 genes, most active only in testis. How did human sex chromosomes get to be so weird?

Our strategy is to compare the chromosomes, genes and DNA in distantly related mammals and even birds and reptiles (which have completely different sex determining systems). The genomes of Australia's unique kangaroos and platypus, now being completely sequenced, are a goldmine of new information. Kangaroo sex chromosomes reveal the original mammal sex chromosomes, while the bizarre platypus sex chromosomes (more related to those of birds) tell us that our sex chromosomes are relatively young.

Our works shows that the human X and Y evolved from an ordinary chromosome pair just 150 million years ago. It is degrading progressively and I predict it will disappear in just 5 million years. If humans don't become extinct, new sex determining genes and chromosomes must evolve, maybe leading to the evolution of new hominid species.

The speaker's presentation can be found here: Jenny Graves Talk (25 MB PDF).

Jenny was born and educated in Adelaide. She was no science star at school, but topped the state in Geography. She didn't much like biology but, after undergraduate studies at Adelaide University, a fascination with genetics led her rather accidentally to a PhD in molecular biology at the University of California at Berkeley, thanks to a Fulbright award. Jenny then spent nearly 30 years at La Trobe University in Melbourne before moving to the Australian National University in 2001.

In the 1970s, Jenny stumbled on the potential of Australia's unique fauna (mammals, birds, and reptiles) to study genetic structures and regulation systems conserved from the earliest vertebrates through to humans. By exploiting the genetic diversity of Australia's unique mammals, her group have gained insights into mammalian sex, development, genetic disease, defence mechanisms, and species survival. Her lab's unique contributions to understanding the evolution, function and organization of the mammalian genome have had major impacts on current thinking in the field.

Jenny has been an enthusiastic advocate for comparative genomics. She set up and directs the ARC Centre of Excellence for Kangaroo Genomics, which has secured a key role for Australia in the sequencing and analysis of the kangaroo genome. Her contributions to science have been recognized by election to the Australian Academy of Science in 1999, a Centenary Medal in 2002 and the Macfarlane Burnet Medal in 2005. She is a 2006 Laureate of the L'Oréal-UNESCO Awards For Women in Science.

Research projects

Our group (Comparative Genomics) is famous for studying genes and chromosomes of Australian animals. Every project depends ultimately on samples from a variety of Australian animals such as kangaroos and platypus, but also exotics like devils (Tasmanian) and dragons (lizards). Pat is a whiz at organizing legalities and technicalities, as well as animal handling and sampling; Jenny would really prefer to work on tomatoes or fruitflies. We culture tiny samples of skin cells in the laboratory. Jenny's training in cell culture at Berkeley was used to establish methods for growing just about anything, and Pat now runs our unique cell culture lab with exacting standards. Our stock in-trade is physical mapping of genes onto chromosomes, and getting brilliant chromosome preparations is crucial; here Pat's training in human cytogenetics complements Jenny's training in molecular cytology.

We use these basic techniques more and more for large-scale projects on the genomes of Australian mammals. Basic work had to be done to characterize the chromosomes of the kangaroo and the platypus before the complete sequence of their genomes (costing many millions of dollars) could be interpreted. Platypus chromosomes caused major headaches because they have weird multiple sex chromosomes: Jenny had been trying to sort them out for 20 years, now an onslaught using new molecular techniques allowed Jenny and Pat, with a postdoc and research assistant, to sort out which chromosome is which.

Two major projects last year that Pat and Jenny collaborated on were to construct physical maps of the platypus and the opossum; these required painstaking isolation and characterization of large DNA fragments, tagging them with a fluorescent dye, then attaching them to chromosomes where they home in on the DNA containing this sequence and reveal their presence by a bright spot on one of the chromosomes. Pat has ensured that the quality of the chromosomes, the probes and the images are all 100%, and Jenny has made sure the locations make sense and put the map together with other genomic data. These maps were crucial for deciphering the complete DNA sequence of the first marsupial and the first monotreme genome. These projects culminated in major papers on which Pat and Jenny are both authors.

1173rd Ordinary General Meeting

"What will coral reefs look like in 2050?"

Associate Professor Peter Ralph, Executive Director, Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney

Wednesday 5 August 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Corals have existed for millions of years and survived in a wide range of climates; but coral bleaching seems to have pushed corals to the brink. Research in to coral bleaching has been at the forefront of the climate change agenda for many years. It attracts much public interest, but we still do not know why corals die at temperatures only a few degrees higher than their optimum. Given the onset of coral bleaching and the combined stress of ocean acidification, I will describe how I see the Great Barrier Reef in 2050. Will the reef be dominated by fleshy macroalgae, soft corals or just a film of bacteria covering the dead coral skeletons?

The speaker's presentation can be found here: Peter Ralph Talk (36 MB PDF).

Peter Ralph is an Associate Professor at UTS and the Executive Director of the Plant Functional Biology and Climate Change Cluster (C3). He has over 15 years experience in the areas of photosynthetic physiology and ecology of marine plants and is widely regarded as a world expert in this field. His research team has made significant contributions to the physiology of marine plants, including corals, Antarctic sea-ice algae, seagrasses and macroalgae. His group includes senior research fellows, 3 post docs, 7 PhD students and 4 Honours. His team has on-going research collaborations with Danish, German, UK, US and Canadian photobiologists. Peter has been addressing questions fundamental to advancing knowledge of marine photosynthetic organisms that survive at the edge of their environmental envelope. His group is currently developing mechanistic models of microalgal photo-physiology, as well as developing a fluorescence-based proxy of primary production.

1172nd Ordinary General Meeting

"Accurate measurement: the vital backbone of Australian science & industry"

Dr Laurie Besley, Chief Executive & Chief Metrologist, National Measurement Institute

Wednesday 1 July 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

Measurement pervades all aspects of our society, from the sale of food by weight in the supermarket, to the management of data transfer systems to better than nanosecond precision for the telecommunications sector. The National Measurement Institute (NMI) is the national core of Australia's expertise in measurement and has the responsibility to address this entire spectrum of needs. It not only maintains, develops and disseminates the primary measurement standards for Australia in physics, chemistry and biology, but also operates specialist laboratories based on these measurement skills, such as a mainstream forensic laboratory, Australia's only WADA-accredited sports drugs laboratory, and a high-voltage laboratory for the electrical utilities. The talk will discuss how NMI addresses this myriad of challenges and outline the outcomes to Australia from its activities.

Dr Besley's scientific and management career has spanned a diversity of fields. including, for the last dozen years, metrology in chemistry. After beginning his career in cryogenic temperature measurement and spending 20 years working in physical metrology, he applied his PhD in chemistry to transplanting the metrological approach from physics to chemistry and initiated work in this area within what was then the National Measurement Laboratory (NML) in Australia. He then became Director of the National Analytical Reference Laboratory within the Australian government body AGAL. When AGAL and NML both became part of the new organisation NMI in 2004, he was first appointed to a role as general manager of the metrology in chemistry branch and late in 2007 was given his present role as Chief Executive. Dr Besley has a publication list of some 75 journal publications in a variety of different fields of metrology.

Dr Besley is a member of the Royal Australian Chemical Institute and a Fellow of the Institute of Physics (UK). He is also a member of the NATA Council. He is active in a number of international forums including being a consultant to the Executive Committee of the Asia-Pacific Metrology Programme. He is a member of the editorial boards of the international journals "Metrologia", "IET Science Measurement & Technology", and "Accreditation and Quality Assurance". He has worked on a number of occasions as a consultant for the Technical Cooperation programme of the German metrology institute (PTB), mostly in Thailand, and most recently in Sri Lanka.


1171st Ordinary General Meeting

"New environmentally friendly approaches to cooling buildings"

Professor Geoff Smith, Department of Physics and Advanced Materials, University of Technology, Sydney

Wednesday 3 June 2009 at 7 pm
Conference Room 1, Darlington Centre, University of Sydney

The potential for energy savings in the cooling of buildings is very large and of growing importance as living standards rise, as global warming impacts, and as the "heat island" effect gets worse with increased urbanisation. There are two aspects: (i) passive systems which minimise heat gains, and (ii) active systems and strategies which minimise or eliminate the need for electrically powered cooling. This talk will examine novel materials and systems which play a role in both active and passive reductions in the demand for electrically powered cooling. It will also include results with special paints and nanostructured coatings developed at UTS.

Amplification of night sky radiative cooling using nanostructures and heat mirrors will be outlined, in which material spectral properties and system design in combination optimally exploit the spectral and directional properties of incoming atmospheric thermal radiation. Useful cooling powers under clear skies at temperatures down to ~15℃ below ambient are feasible in well engineered systems, while simple low cost systems can achieve useful cooling powers in the range 5℃ to 10℃ below ambient. There are a many ways such capabilities can be put to use.

The speaker's presentation can be found here: Geoff Smith's Talk (4.6 MB PDF).

Geoff Smith is Professor Emeritus in Applied Physics at the University of Technology, Sydney Australia. He has worked on the science and applications of nanomaterials for over 30 years. His group, in partnership with local and international industry, has pioneered developments in the fields of solar energy, energy efficient windows and paints, radiative cooling, natural lighting and LED lighting. Products and several patents have followed. Key contributions to nano-photonics, thin film optics and polymer optics feature in his work with over 180 reviewed papers and several book chapters. He is chair of the Australian Standards committee on roof glazing and skylights, helped formulate Australia's recent energy efficient building codes, and has chaired an annual International Conference in the USA (SPIE - Nanostructured Thin Films) since 2006. Geoff has a number of overseas and local awards in the renewables and energy field including an honorary doctorate from the University of Uppsala in Sweden in 2003. He is a Fellow of the AIP and of the Institute of Energy.

A summary of the July lecture by Dr Jim Franklin

There is a hole in the atmosphere that can be used to cool buildings. This is important because the electricity used for air-conditioning is a major contributor to greenhouse gas emissions and building running costs. Professor Geoff Smith from UTS explained that at wavelengths below 8 micrometers, the atmosphere is opaque because of absorption from water vapour. Above 13 micrometres it is opaque because of absorption from carbon dioxide and water vapour. So for long and short wavelengths we see a hot opaque atmosphere and no radiative cooling is possible.

However, between 8 and 13 micrometers the atmosphere is fairly transparent (opacity is 17 % at the vertical, increasing to 100 % at the horizon). So at this "wavelength hole", an object can radiate its heat away through the atmosphere into space and receive little heat back from the atmosphere. The cooling effect is greatest towards the vertical. Professor Smith has shown that net-cooling powers can in principle exceed 200 W/m2. Experimental systems developed by his group can run 10°C below ambient at night and pump 135 W/m2. Or they can achieve much lower temperatures with smaller cooling powers. The key is to use an optical design in which the radiator only sees the "cool" sky at the zenith. If these systems are shielded from the direct sun, they can also give good cooling during the day. Prof Smith has investigated special selective surfaces that radiate most efficiently in the "wavelength hole" with little emission at other wavelengths. Surprisingly, these selective surfaces offer little advantage, except when one is striving for the lowest possible temperature.

Professor Smith then discussed new building materials he has worked on that can help cool buildings. With BASF and others he has helped develop special paints that reflect the infrared part of sunlight but look like ordinary pigments to the naked eye. A special white paint developed by UTS can greatly decrease solar heating. When tested on a Queensland supermarket it cut air-conditioning power consumption by two thirds.

Another interesting material described by Prof Smith is Micronal sheeting (made by BASF). This is plasterboard with a high loading of microcapsules of an alkane wax that changes phase at room temperature. This gives the material superb heat storage capabilities. A 3 cm sheet has the same heat capacity as 18 cm of concrete or 23 cm of brick. A building using this material can have enhanced comfort and reduced costs with minimal air conditioning or heating. In summer one lets in the cold night air to chill the sheets, and then uses them to cool the building during the hot part of the day. In winter, the noon sun warms the sheets, which can heat the building at night. Clearly radiative cooling and new, high tech materials have an important future in cooling buildings.

Royal Society events

The Royal Society of NSW organizes a number of events in Sydney throughout the year.  These include Ordinary General Meetings (OGMs) held on the first Wednesday of the month (there is no meeting in January).  Society business is conducted, new Fellows and Members are inducted, and reports from Council are given to the membership.  This is followed by a talk and optional dinner.  Drinks are served before the meeting.  There is a small charge to attend the meeting and talk, and to cover refreshments.  The dinner is a separate charge, and must be booked in advance.  All OGMs are open to members of the public.

The first OGM in February has speakers drawn from the Royal Society Scholarship winners, and the December OGM hears from the winner of the Jak Kelly award, before an informal Christmas party.  The April or May event is our black-tie Annual Dinner and Distinguished Fellow lecture.

Other events are held in collaboration with other groups, including:

  • The Four Societies lecture (with the Australian Institute of Energy, the Nuclear Panel of Engineers Australia [Sydney Division] and the Australian Nuclear Association)
  • The Forum (with the Australian Academy of Technology and Engineering, the Australian Academy of Science, the Australian Academy of the Humanities and the Academy of the Social Sciences in Australia)
  • The Dirac lecture (with UNSW Australia and the Australian Institute of Physics)
  • The Liversidge Medal lecture (with the Royal Australian Chemical Institute)
Site by ezerus.com.au

Privacy policy  |  Links to other societies

All rights reserved; copyright © The Royal Society of NSW.